Skip to main content
Log in

Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study thoroughly examines various higher-order three and four-node beam elements for use in the absolute nodal coordinate formulation (ANCF). The paper carefully investigates which potential benefits and drawbacks the utilization of higher-order ANCF beam elements without in-slope vectors has in the case of the usage of full three-dimensional elasticity. When the elastic forces for shear-deformable ANCF beam elements are calculated using full three-dimensional elasticity—especially in the form of the St. Venant–Kirchhoff material law—Poisson locking severely deteriorates the accuracy of the numeric results. As shown in this paper, an existing approach to preventing this locking phenomenon for three-node beam elements can still produce unsatisfying results in load cases involving bidirectional bending. The results of this study show that enriching the polynomial basis used to approximate the beam kinematics provides a natural solution to this issue. As will be seen, these findings for three-node elements can also be extended to four-node elements. When using a sufficient approximation order in transverse directions, satisfying accuracy can be achieved both in conventional one-dimensional bending and in the above-mentioned bidirectional load case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K., Gruber, P.: Experimental validation of flexible multibody dynamics beam formulations. Multibody Syst. Dyn. 34(4), 373–389 (2015)

    Article  MathSciNet  Google Scholar 

  2. Dmitrochenko, O., Mikkola, A.: Digital nomenclature code for topology and kinematics of finite elements based on the absolute nodal co-ordinate formulation. Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn. 225(1), 34–51 (2011)

    Google Scholar 

  3. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280(3), 719–738 (2005)

    Article  Google Scholar 

  4. Dowell, E.H., Traybar, J.J.: An addendum to AMS report no 1194 entitled an experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations. Technical Report 1257, AMS Report, December (1975)

  5. Dowell, E.H., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag and twist deformations. Technical Report 1194, AMS Report, January (1975)

  6. Gerstmayr, J., Matikainen, M.K.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Based Des. Struct. Mach. 34(4), 409–430 (2006)

    Article  Google Scholar 

  7. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June 2005

  9. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45(1), 109–130 (2006)

    Article  MATH  Google Scholar 

  10. Humer, A.: Dynamic modeling of beams with non-material, deformation-dependent boundary conditions. J. Sound Vib. 332(3), 622–641 (2013)

    Article  Google Scholar 

  11. Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43(3), 239–256 (2006)

    Article  MATH  Google Scholar 

  12. Matikainen, M.K., Dmitrochenko, O.: A study of three-node higher-order gradient beam elements based on the absolute nodal coordinate formulation. In: The 3rd Joint International Conference on Multibody System Dynamics, Busan, Korea (2014)

  13. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation. In International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 19–25 Sept 2010

  14. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.: Higher order beam elements based on the absolute nodal coordinate formulation. In: Multibody Dynamics 2011, ECCOMAS Thematic Conference, 4–7 July 2011

  15. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.: Higher order beam elements based on the absolute nodal coordinate formulation. Multibody Dynamics (2011)

  16. Matikainen, M.K., Valkeapää, A.I., Mikkola, A.M., Schwab, A.L.: A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 31(3), 309–338 (2014)

    Article  MathSciNet  Google Scholar 

  17. Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3d shear deformable finite element based on the absolute nodal coordinate formulation. In: Samin, Jean-Claude, Fisette, Paul (eds.) Multibody Dynamics. Computational Methods in Applied Sciences, vol. 28, pp. 77–96. Springer, Netherlands (2013)

    Google Scholar 

  18. Olshevskiy, A., Dmitrochenko, O., Kim, C.-W.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9(2), 021001 (2014)

    Article  Google Scholar 

  19. Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82(1), 451–464 (2015)

  20. Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)

  21. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)

    Article  Google Scholar 

  23. Sugiyama, H., Mikkola, A.M., Shabana, A.A.: A non-incremental nonlinear finite element solution for cable problems. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 171–181. American Society of Mechanical Engineers (2003)

  24. Valkeapää, A.I., Matikainen, M.K., Mikkola, A.M.: Meshing strategies in the absolute nodal coordinate formulation-based Euler-Bernoulli beam elements. Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn. 230(4), 606–614 (2016)

  25. Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Academy of Finland (Application No. 259543 for the funding of Postdoctoral Researchers and Application No. 285064) for supporting Marko K. Matikainen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Ebel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebel, H., Matikainen, M.K., Hurskainen, VV. et al. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn 88, 1075–1091 (2017). https://doi.org/10.1007/s11071-016-3296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3296-x

Keywords

Navigation