Skip to main content
Log in

Stability analysis of a rotor system with electromechanically coupled boundary conditions under periodic axial load

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The parametric instability of a rotor system with electromechanically coupled boundary conditions under periodic axial loads is studied. Based on the current flowing piezoelectric shunt damping technique, the detailed rotor model is established by the finite element (FE) method. In the matrix assembly procedure, a novel simple process is proposed to make the equations of shunt circuits more conveniently to be introduced into the global FE equations. The discrete state transition matrix method which is used for determining the influence of circuit parameters on instability regions in this paper has also been presented. The numerical simulation shows that only the combination instability regions exist when the shaft is rotating. The mechanical damping has different effect on the simple and combined instability regions. These two points are consistent with the previous references, which verifies the obtained FE model. In addition, the simulated results also reveal that the introduction of shunt circuits has little influence on the rotor’s original whirling frequencies. It gives rise to the appearance of new synchronous whirl modes. The new whirling frequencies are combined with the original ones to form the new combination instability regions. Furthermore, the resistance of shunt circuits has the same performance as the mechanical damping has. That is, moving up the start points of instability regions and expanding its width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. He, H., Tan, X., He, J., Zhang, F., Chen, G.: A novel ring-shaped vibration damper based on piezoelectric shunt damping: Theoretical analysis and experiments. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2019.115125

    Article  Google Scholar 

  2. Tan, X., He, J., Xi, C., Deng, X., Xi, X., Chen, W., He, H.: Dynamic modeling for rotor-bearing system with electromechanically coupled boundary conditions. Appl. Math. Model. 91, 280–296 (2020). https://doi.org/10.1016/j.apm.2020.09.042

    Article  MathSciNet  Google Scholar 

  3. Iwatsubo, T., Sugiyama, Y., Ogino, S.: Simple and combination resonances of columns under periodic axial loads. J. Sound Vib. 33, 211–221 (1974). https://doi.org/10.1016/S0022-460X(74)80107-0

    Article  MATH  Google Scholar 

  4. Saito, H., Otomi, K.: Parametric response of viscoelastically supported beams. J. Sound Vib. 63, 169–178 (1979). https://doi.org/10.1016/0022-460X(79)90874-5

    Article  MATH  Google Scholar 

  5. Kang, B., Tan, C.A.: Parametric instability of a Leipholz column under periodic excitation. J. Sound Vib. 229, 1097–1113 (2000). https://doi.org/10.1006/jsvi.1999.2597

    Article  Google Scholar 

  6. Huang, Y., Liu, A., Pi, Y., Lu, H., Gao, W.: Assessment of lateral dynamic instability of columns under an arbitrary periodic axial load owing to parametric resonance. J. Sound Vib. 395, 272–293 (2017). https://doi.org/10.1016/j.jsv.2017.02.031

    Article  Google Scholar 

  7. Chen, L.W., Ku, D.M.: Dynamic stability analysis of a rotating shaft by the finite element method. J. Sound Vib. 143, 143–151 (1990). https://doi.org/10.1016/0022-460X(90)90573-I

    Article  Google Scholar 

  8. Takayanagi, M.: Parametric resonance of liquid storage axisymmetric shell under horizontal excitation. J. Press. Vessel Technol. Trans. ASME. 113, 511–516 (1991). https://doi.org/10.1115/1.2928788

    Article  Google Scholar 

  9. Dutt, J.K., Nakra, B.C.: Stability of rotor systems with viscoelastic supports. J. Sound Vib. 153, 89–96 (1992). https://doi.org/10.1016/0022-460X(92)90629-C

    Article  MATH  Google Scholar 

  10. Pei, Y.C.: Stability boundaries of a spinning rotor with parametrically excited gyroscopic system. Eur. J. Mech. A Solids. 28, 891–896 (2009)

    Article  Google Scholar 

  11. Han, Q., Chu, F.: Effects of rotation upon parametric instability of a cylindrical shell subjected to periodic axial loads. J. Sound Vib. 332, 5653–5661 (2013). https://doi.org/10.1016/j.jsv.2013.06.013

    Article  Google Scholar 

  12. Han, Q., Chu, F.: Parametric instability of flexible rotor-bearing system under time-periodic base angular motions. Appl. Math. Model. 39, 4511–4522 (2015). https://doi.org/10.1016/j.apm.2014.10.064

    Article  MathSciNet  MATH  Google Scholar 

  13. Song, Z., Chen, Z., Li, W., Chai, Y.: Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method. Meccanica 52, 1159–1173 (2017). https://doi.org/10.1007/s11012-016-0457-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Qaderi, M.S., Hosseini, S.A.A., Zamanian, M.: Combination parametric resonance of nonlinear unbalanced rotating shafts. J. Comput. Nonlinear Dyn. 13, 1–8 (2018). https://doi.org/10.1115/1.4041029

    Article  Google Scholar 

  15. Dai, Q., Cao, Q.: Parametric instability of rotating cylindrical shells subjected to periodic axial loads. Int. J. Mech. Sci. 146–147, 1–8 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.031

    Article  Google Scholar 

  16. Phadatare, H.P., Pratiher, B.: Dynamic stability and bifurcation phenomena of an axially loaded flexible shaft-disk system supported by flexible bearing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 234, 2951–2967 (2020). https://doi.org/10.1177/0954406220911957

    Article  Google Scholar 

  17. De Felice, A., Sorrentino, S.: Stability analysis of parametrically excited gyroscopic systems. Springer (2020). https://doi.org/10.1007/978-3-030-41057-5_106

    Article  Google Scholar 

  18. Behrens, S., Moheimani, S.O.R., Fleming, A.J.: Multiple mode current flowing passive piezoelectric shunt controller. J. Sound Vib. 266, 929–942 (2003). https://doi.org/10.1016/S0022-460X(02)01380-9

    Article  Google Scholar 

  19. Gardonio, P., Zientek, M., Dal Bo, L.: Panel with self-tuning shunted piezoelectric patches for broadband flexural vibration control. Mech. Syst. Signal Process. 134, 106299 (2019). https://doi.org/10.1016/j.ymssp.2019.106299

    Article  Google Scholar 

  20. Nelson, H.D., McVaugh, J.M.: The dynamics of Rotor-Bearing Systems using finite elements. J. Eng. Ind. 98, 593 (1976). https://doi.org/10.1115/1.3438942

    Article  Google Scholar 

  21. Komzsik, L.: Implicit computational solution of generalized quadratic eigenvalue problems. Finite Elem. Anal. Des. 37, 799–810 (2001). https://doi.org/10.1016/S0168-874X(01)00039-7

    Article  MATH  Google Scholar 

  22. Friedmann, P., Hammond, E., Woo, T.H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11, 1117–1136 (1977). https://doi.org/10.1002/nme.1620110708

    Article  MathSciNet  MATH  Google Scholar 

  23. Preumont A.: Vibration Control of Active Structures, 4, Springer, Berlin https://doi.org/10.1007/978-94-007-2033-6 (2018)

    Book  MATH  Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

Download references

Acknowledgement

The work was funded by National Natural Science Foundation of China (Grant No. 12072153) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Note that the second equation in Eq. (7)–(10) are similar and compact. What their final forms like depends on what shunted circuit the vibration ring connected. Hence, it is necessary to derive their specific forms in the case of using current flowing shunt circuits. Before giving the general FE model using N branch shunt circuits, the case of using single branch is discussed as follows. In which case, the second equation in Eq. (7) is analyzed here.

For a shunted piezo stack, it is equivalent to an ideal voltage source Up in series with a capacitor \(C_{p}^{S}\) or an ideal current source in parallel with such capacitor. When the stack is shunted with a single resonant circuit, its circuit diagram is shown in Fig. 

Fig. 14
figure 14

The circuit diagram for a piezo stack shunted with a single resonant circuit

14. In this case, the electrical impedance Ze is equal to 1/sCf1 + sL1 + Rt1, where s is the Laplace transform variable. According to Eq. (1), the second equation in Eq. (7) can be written as

$$ 2\cot^{2} \beta \frac{{\theta_{p}^{2} }}{{C_{p}^{S} }}\left( {a_{lz} - \frac{{q_{lz} }}{{\theta_{p} }}} \right) = 2\theta_{p}^{2} \cot^{2} \beta \left( {\frac{1}{{sC_{f1} }} + sL_{1} + R_{t1} } \right)\frac{{\dot{q}_{lz} }}{{\theta_{p} }} $$
(A1)

Equation (A1) can be straightforwardly transformed into the following time domain expression:

$$ L_{1} \ddot{q}_{lz} + R_{t1} \dot{q}_{lz} + \left( {\frac{1}{{C_{p}^{S} }} + \frac{1}{{C_{f1} }}} \right)q_{lz} - \frac{{\theta_{p} }}{{C_{p}^{S} }}a_{lz} = 0 $$
(A2)

Actually Eq. (A2) can be directly derived using Kirchhoff’s Voltage Law (KVL) through Fig. 14. It is obvious that the voltage generated by the piezo stack due to the electromechanical effect is equal to \((\theta_{p} /C_{p}^{S} )a_{lz}\). This inspired us that for the multi-resonant shunts, its circuit diagram can be drawn as Fig. 

Fig. 15
figure 15

The circuit diagram of multi-resonant shunt circuit

15. From Fig. 15 the following equations can be obtained using KVL

$$ \left\{ \begin{gathered} \dot{\tilde{q}}_{lz} = \dot{\tilde{q}}_{lz1} + \dot{\tilde{q}}_{lz2} + \cdots + \dot{\tilde{q}}_{lzN} \Rightarrow \tilde{q}_{lz} = \tilde{q}_{lz1} + \tilde{q}_{lz2} + \cdots + \tilde{q}_{lzN} \hfill \\ L_{1} \ddot{\tilde{q}}_{lz1} + R_{t1} \dot{\tilde{q}}_{lz1} + \frac{{\tilde{q}_{lz1} }}{{C_{f1} }} + \frac{{\tilde{q}_{lz} }}{{C_{p}^{S} }} - \frac{{a_{lz} }}{{C_{p}^{S} }} = 0 \hfill \\ L_{2} \ddot{\tilde{q}}_{lz2} + R_{t2} \dot{\tilde{q}}_{lz2} + \frac{{\tilde{q}_{lz2} }}{{C_{f2} }} + \frac{{\tilde{q}_{lz} }}{{C_{p}^{S} }} - \frac{{a_{lz} }}{{C_{p}^{S} }} = 0 \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \hfill \\ L_{N} \ddot{\tilde{q}}_{lzN} + R_{tN} \dot{\tilde{q}}_{lzN} + \frac{{\tilde{q}_{lzN} }}{{C_{fN} }} + \frac{{\tilde{q}_{lz} }}{{C_{p}^{S} }} - \frac{{a_{lz} }}{{C_{p}^{S} }} = 0 \hfill \\ \end{gathered} \right. $$
(A3)

where the charge in each branch shunt has been transformed into generalized charge through dividing it by the generalized electromechanical coupling factor θp. Note that the first equation of Eq. (A3) is only valid under the zero initial condition. Combining Eq. (A3) and the first equation in Eq. (7), the following matrix equation can be obtained

$$ {\mathbf{M}}_{{\text{c}}} \ddot{\mathbf{{u}}}_{{{\text{lzc}}}} + {\mathbf{C}}_{{\text{c}}} {\dot{\mathbf{u}}}_{{{\text{lzc}}}} + {\mathbf{K}}_{{\text{c}}} {\mathbf{u}}_{{{\text{lzc}}}} = {\mathbf{f}}_{{{\text{lzc}}}} $$
(A4)

where

$$ \begin{gathered} {\mathbf{M}}_{{\text{c}}} = {\text{diag}}\left[ {m_{b} ,\;L_{1} ,\;L_{2} ,\; \cdots ,\;L_{N} } \right],\;\;{\mathbf{C}}_{{\text{c}}} = {\text{diag}}\left[ {\eta ,\;R_{t1} ,\;R_{t2} ,\; \cdots ,\;R_{tN} } \right] \hfill \\ {\mathbf{K}}_{{\text{c}}} = \left[ {\begin{array}{*{20}c} {k_{sum} } & { - k_{eq2} } & { - k_{eq2} } & \cdots & { - k_{eq2} } \\ { - \frac{1}{{C_{p}^{S} }}} & {\frac{1}{{C_{f1} }} + \frac{1}{{C_{p}^{S} }}} & {\frac{1}{{C_{p}^{S} }}} & \cdots & {\frac{1}{{C_{p}^{S} }}} \\ { - \frac{1}{{C_{p}^{S} }}} & {\frac{1}{{C_{p}^{S} }}} & {\frac{1}{{C_{f2} }} + \frac{1}{{C_{p}^{S} }}} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & {\frac{1}{{C_{p}^{S} }}} \\ { - \frac{1}{{C_{p}^{S} }}} & {\frac{1}{{C_{p}^{S} }}} & \cdots & {\frac{1}{{C_{p}^{S} }}} & {\frac{1}{{C_{fN} }} + \frac{1}{{C_{p}^{S} }}} \\ \end{array} } \right] \hfill \\ {\mathbf{f}}_{{{\text{lzc}}}} = \left[ {k_{eq} w\left( {0,t} \right) + \eta \dot{w}\left( {0,t} \right),\;0,\; \cdots ,\;0} \right]^{{\text{T}}} = \left[ {k_{eq} w_{1} + \eta \dot{w}_{1} ,\;0,\; \cdots ,\;0} \right]^{{\text{T}}} \hfill \\ {\mathbf{u}}_{{{\text{lzc}}}} = \left[ {a_{lz} ,\;\tilde{q}_{lz1} ,\;\tilde{q}_{lz2} ,\; \cdots ,\;\tilde{q}_{lzN} } \right]^{{\text{T}}} \hfill \\ \end{gathered} $$
(A5)

In the same manner, the matrix equation of Eq. (8)–(10) for the other boundary conditions can be derived, which are given as

$$ \begin{gathered} {\mathbf{M}}_{{\text{c}}} \ddot{\mathbf{{u}}}_{{{\text{rzc}}}} + {\mathbf{C}}_{{\text{c}}} {\dot{\mathbf{u}}}_{{{\text{rzc}}}} + {\mathbf{K}}_{{\text{c}}} {\mathbf{u}}_{{{\text{rzc}}}} = {\mathbf{f}}_{{{\text{rzc}}}} \hfill \\ {\mathbf{M}}_{{\text{c}}} \ddot{\mathbf{{u}}}_{{{\text{lyc}}}} + {\mathbf{C}}_{{\text{c}}} {\dot{\mathbf{u}}}_{{{\text{lyc}}}} + {\mathbf{K}}_{{\text{c}}} {\mathbf{u}}_{{{\text{lyc}}}} = {\mathbf{f}}_{{{\text{lyc}}}} \hfill \\ {\mathbf{M}}_{{\text{c}}} \ddot{\mathbf{{u}}}_{{{\text{ryc}}}} + {\mathbf{C}}_{{\text{c}}} {\dot{\mathbf{u}}}_{{{\text{ryc}}}} + {\mathbf{K}}_{{\text{c}}} {\mathbf{u}}_{{{\text{ryc}}}} = {\mathbf{f}}_{{{\text{ryc}}}} \hfill \\ \end{gathered} $$
(A6)

where

$$\begin{aligned} & {\mathbf{f}}_{{{\text{rzc}}}} = \left[ {k_{{eq}} w\left( {L,t} \right) + \eta \dot{w}\left( {L,t} \right),0, \ldots ,0} \right]^{{\text{T}}} = \left[ {k_{{eq}} w_{{n + 1}} + \eta \dot{w}_{{n + 1}} ,0, \ldots ,0} \right]^{{\text{T}}} \\ & {\mathbf{f}}_{{{\text{lyc}}}} = \left[ {k_{{eq}} v\left( {0,t} \right) + \eta \dot{v}\left( {0,t} \right),0, \ldots ,0} \right]^{{\text{T}}} = \left[ {k_{{eq}} v_{1} + \eta \dot{v}_{1} ,0, \ldots ,0} \right]^{{\text{T}}} \\ & {\mathbf{f}}_{{{\text{ryc}}}} = \left[ {k_{{eq}} v\left( {L,t} \right) + \eta \dot{v}\left( {L,t} \right),0, \ldots ,0} \right]^{{\text{T}}} = \left[ {k_{{eq}} v_{{n + 1}} + \eta \dot{v}_{{n + 1}} ,0, \ldots ,0} \right]^{{\text{T}}} \\ & {\mathbf{u}}_{{{\text{rzc}}}} = \left[ {a_{{rz}} ,\tilde{q}_{{rz1}} ,\tilde{q}_{{rz2}} , \ldots ,\tilde{q}_{{rzN}} } \right]^{{\text{T}}} \\ & {\mathbf{u}}_{{{\text{lyc}}}} = \left[ {a_{{ly}} ,\tilde{q}_{{ly1}} ,\tilde{q}_{{ly2}} , \ldots ,\tilde{q}_{{lyN}} } \right]^{{\text{T}}} \\ & {\mathbf{u}}_{{{\text{ryc}}}} = \left[ {a_{{ry}} ,\tilde{q}_{{ry1}} ,\tilde{q}_{{ry2}} , \ldots ,\tilde{q}_{{ryN}} } \right]^{{\text{T}}} \\ \end{aligned}$$
(A7)

Note that the stiffness matrix Kc in Eq. (A5) is asymmetric. To symmetrize it, enlightened by the designation: keq2 = 2cot2β ·\(\theta_{p}^{2} /C_{p}^{S}\), multiply each row which corresponding to the generalized charge \(\tilde{q}_{lzi}\) by 2cot2β ·\(\theta_{p}^{2}\), one can obtain the following symmetric expression:

$$ \begin{gathered} M_{c} = diag\left[ {m_{b} ,\;2\cot^{2} \beta \theta_{p}^{2} L_{1} ,\;2\cot^{2} \beta \theta_{p}^{2} L_{2} ,\; \cdots ,\;2\cot^{2} \beta \theta_{p}^{2} L_{N} } \right] \hfill \\ C_{c} = diag\left[ {\eta ,\;2\cot^{2} \beta \theta_{p}^{2} R_{t1} ,\;2\cot^{2} \beta \theta_{p}^{2} R_{t2} ,\; \cdots ,\;2\cot^{2} \beta \theta_{p}^{2} R_{tN} } \right] \hfill \\ K_{c} = \left[ {\begin{array}{*{20}c} {k_{sum} } & { - k_{eq2} } & { - k_{eq2} } & \cdots & { - k_{eq2} } \\ { - k_{eq2} } & {\frac{{2\cot^{2} \beta \theta_{p}^{2} }}{{C_{f1} }} + k_{eq2} } & {k_{eq2} } & \cdots & {k_{eq2} } \\ { - k_{eq2} } & {k_{eq2} } & {\frac{{2\cot^{2} \beta \theta_{p}^{2} }}{{C_{f2} }} + k_{eq2} } & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & {k_{eq2} } \\ { - k_{eq2} } & {k_{eq2} } & \cdots & {k_{eq2} } & {\frac{{2\cot^{2} \beta \theta_{p}^{2} }}{{C_{fN} }} + k_{eq2} } \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A8)

From above description, one can see that this process is not only applicable to the current flowing shunt circuits, but also for the other kinds of shunt circuits. One can directly use the circuit theory to derive the shunt circuits’ governing equations and assemble them into the global FE equations. The key point is that substituting the voltage source which generated from the piezo stack by the term \((\theta_{p} /C_{p}^{S} )a_{lz}\). This is namely the representative of electromechanical coupling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Chen, G., He, H. et al. Stability analysis of a rotor system with electromechanically coupled boundary conditions under periodic axial load. Nonlinear Dyn 104, 1157–1174 (2021). https://doi.org/10.1007/s11071-021-06339-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06339-w

Keywords

Navigation