Skip to main content
Log in

Verified error bounds for singular solutions of nonlinear systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We discuss the verification for isolated singular solutions and non-isolated singular solutions with maximum rank deficiency of general nonlinear systems which have all the relevant partial derivatives. Using the border system technique, we present a deflation algorithm to compute verified error bound for such a singular solution of the given system or for a solution of a slight perturbed system, where the solution of the slight perturbed system is near the above singular solution of the given system. By adding certain components of the solution of certain linear system, our algorithm decreases the dimension of the deflation system in each step. Numerical experiments show the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, B., Giusti, M., Heintz, J., El Din, M.S., Schost, E.: On the geometry of polar varieties. Appl. Algebra Engrg. Comm. Comput. 21, 33–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björock, G., FRöberg, R.: A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots. J. Symb. Comput 12(3), 329–336 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44(6), 2326–2341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Frommer, A., Bruno Lang, B.: Computational existence proofs for spherical t-designs. Numer. Math. 117, 289–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In Proceedings of the 2005 international symposium on Symbolic and algebraic computation, 116–123 (2005)

  6. Dayton, B.H., Li, T., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comput. 80, 2143–2168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Decker, D.W., Kelley, C.T.: Newton’s method at singular points.I. SIAM. I. SIAM J. Numer. Anal. 17(1), 66–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Decker, D.W., Kelley, C.T.: Newton’s method at singular points. II. SIAM J. Numer. Anal. 17(3), 465–471 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Decker, D.W., Kelley, C.T.: Convergence acceleration for Newton’s method at singular points. SIAM J. Numer. Anal. 19(1), 219–229 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dennis Jr, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and Nonlinear Equations. SIAM, Philadelphia, PA (1996)

  11. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation of clusters of zeroes of analytic functions. Found. Comput. Math. 5(3), 257–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation of clusters of zeroes: case of embedding dimension one. Found. Comput. Math. 7(1), 1–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giusti, M., Yakoubsohn J.C.: Tracking multiplicities. In contemporary mathematics 604, american mathematical society, recent advances in real complexity and computation, pp 16–20 (2012)

  14. Golub, G.H., Van Loan, Ch: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Griewank, A.: Analysis and modification of Newton’s method at singularities. Ph.D. thesis, Australian National University (1980)

  16. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. SIAM Rew. 27(4), 537–563 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Griewank, A., Osborne M.R.: Newton’s method for singular problems when the dimension of the null space is >1. SIAM J. Numer. Anal. 18(1), 145–149 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griewank, A., Osborne M.R.: Analysis of Newton’s method at irregular singularities. SIAM J. Numer. Anal. 20(4), 747–773 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Griewank, A., Reddien, G.W.: Characterisation and computation of generalised turning points. SIAM J. Numer. Anal. 21, 176–185 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griewank, A., Reddien, G.W.: The approximation of generalized turning points by projection methods with superconvergence to the critical parameter. Numer. Math. 48, 591–606 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griewank, A., Reddien, G.W.: The approximate solution of defining equations for generalized turning points. SIAM J. Numer. Anal. 33, 1912–1920 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Griewank, A., Walther, A., Second Edition: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM Press, Philadelphia (2008)

    Book  MATH  Google Scholar 

  23. Govaerts. W.J.F.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM Press, Philadelphia (2000)

    Book  Google Scholar 

  24. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia,PA (1995)

  25. Kobayashi, H., Suzuki, H., Sakai, Y.: Numerical calculation of the multiplicity of a solution to algebraic equations. Math. Comput. 67(221), 257–270 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krawczyk, R.: Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing 4, 187–201 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2-3), 109–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359(1), 111–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leykin, A., Verschelde, J., Zhao, A.: Higher-order deflation for polynomial systems with isolated singular solutions. In: Algorithms in Algebraic Geometry. In: Dickenstein, A., Schreyer, F. O. , Sommese, A. (eds.) The IMA Volumes in Mathematics and its Applications, vol. 146. Springer press, New York (2008)

  30. Li, N., Zhi, L.: Computing the multiplicity structure of an isolated singular solution: case of breadth one. J. Symb. Comput. 47(6), 700–710 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, N., Zhi, L.: Computing isolated singular solutions of polynomial systems: case of breadth one 50(1), 354–372 (2012)

  32. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial systems: case of breadth one. Theor. Comput. Sci. 479, 163–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)

  34. Ma, Y., Zhi, L.: Computing real solutions of polynomial systems via low-rank moment matrix completion. In Proceedings of the 2012 international symposium on symbolic and algebraic computation, pp 249–256. ACM press, New York (2012)

    Google Scholar 

  35. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of polynomial systems. In Proceedings of the 2011 international symposium on symbolic and algebraic computation, pp 249–256. ACM press, San Jose (2011)

    MATH  Google Scholar 

  36. Moore, R.E.: A test for existence of solutions to nonlinear system. SIAM J. Numer. Anal. 14, 611–615 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Moritsugu, S., Kuriyama, K.: On multiple zeros of systems of algebraic equations. In: Proceedings of the 1999 international symposium on Symbolic and algebraic computation, pp. 23–30. ACM press, Vancouver, B.C. (1999)

  38. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96, 463–479 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ojika, T.: Modified deflation algorithm for the solution of singular problems, I. A system of nonlinear algebraic equations. J. Math. Anal. Appl. 123, 199–221 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ojika, T.: A numerical method for branch points of a system of nonlinear algebraic equations. Applied Numer. Math. 4(5), 419–430 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  42. Rabier, P.J., Reddien, G.W.: Characterization and computation of singular points with maximum rank deficiency. SIAM Numer. J. Anal. 23, 1040–1051 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rall, L.B.: Convergence of the Newton process to multiple solutions. Numer. Math 9(1), 23–37 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  44. Reddien, G.W.: On Newton’s method for singular problems. SIAM J. Numer. Anal. 15(5), 993–996 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rump, S.M.: Solving algebraic problems with high accuracy. In: Kulisch, W. L., Miranker, W. L. (eds.) A New Approach to Scientific Computation, pp. 51–120. Academic Press, San Diego (1983)

    Google Scholar 

  46. Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of nonlinear equations. Numer. Algor. 54, 359–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica 19, 287–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rump, S.M.: Kleine fehlerschranken bei matrixproblemen. Ph.D. thesis, Universit Karlsruhe (1980)

  49. Rump, S.M.: INTLAB–interval laboratory. Springer, Netherlands, Berlin (1999)

    Book  MATH  Google Scholar 

  50. Shen, Y.Q., Ypma, T.J.: Newton’s method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian. Appl. Numer. Math. 54(2), 256–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. 4(1), 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sommese, A.J., Wampler, C.W.: The numerical solution of systems of polynomials-arising in engineering and science. World Scientific, Singapore (2005)

  53. Spang, S.J.: On the computation of the real radical. Ph.D. Thesis, Technische Universität Kaiserslautern (2007)

  54. Spence, A., Poulton, C.: Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phy. 204, 65–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stewart, G.W.: Introduction to Matrix Computations. Academic Press, New York (1980)

    MATH  Google Scholar 

  56. Sturmfels, B.: Solving systems of polynomial equations. American Mathematical Soc (2002)

  57. Yamamoto, N.: Regularization of solutions of nonlinear equations with singular Jacobian matrices. J. information processing 7(1), 16–21 (1984)

    MathSciNet  MATH  Google Scholar 

  58. Yamamoto, T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124, 1–23 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, Z., Zhi, L., Zhu, Y.: Verfied error bounds for real solutions of positive-dimensional polynomial systems. In Proceedings of the 2013 international symposium on Symbolic and algebraic computation, pp 371–378. ACM press, San Jose (2013)

    Google Scholar 

  60. Ypma, T.J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. 21(3), 583–590 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ypma, T.J.: Historical development of the Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Sang, H. Verified error bounds for singular solutions of nonlinear systems. Numer Algor 70, 309–331 (2015). https://doi.org/10.1007/s11075-014-9948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9948-3

Keywords

Mathematical Subject Classifications (2010)

Navigation