Skip to main content
Log in

A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This article adapts an operational matrix formulation of the collocation method for the one- and two-dimensional nonlinear fractional sub-diffusion equations (FSDEs). In the proposed collocation approach, the double and triple shifted Jacobi polynomials are used as base functions for approximate solutions of the one- and two-dimensional cases. The space and time fractional derivatives given in the underline problems are expressed by means of Jacobi operational matrices. This investigates spectral collocation schemes for both temporal and spatial discretizations. Thereby, the expansion coefficients are then determined by reducing the FSDEs, with their initial and boundary conditions, into systems of nonlinear algebraic equations which are far easier to be solved. Furthermore, the error of the approximate solution is estimated theoretically along with graphical analysis to confirm the exponential convergence rate of the proposed method in both spatial and temporal discretizations. In order to show the high accuracy of our algorithms, we report the numerical results of some numerical examples and compare our numerical results with those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers (2006)

  2. David, S.A., Linares, J.L., Pallone, E.M.J.A.: Fractional order calculus: historical apologia, basic concepts and some applications. Rev. Bras. Ensino Fs. 33, 4302–4302 (2011)

    Article  Google Scholar 

  3. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dynamics, doi:10.1007/s11071-015-2087-0 (2015)

  4. Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Ac.: Tech. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  5. Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous madia using fractional calculus. Phil. Trans. R. Soc. A 371 (2013). 20130146

  6. Jiang, Y., Ma, J.: Higher order finite element methods for time fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, J., Hou, G.: Numerical solutions of the space- and time-fractional coupled Burgers equation by generalized differential transform method. Appl. Math. Comput. 217, 7001–7008 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algor. doi:10.1007/s11075-015-9990-9 (2015)

  9. Ray, S.S.: On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl. Math. Comput. 218, 5239–5248 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F.: Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput. 234, 267–276 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Ma, J., Liu, J., Zhou, Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)

    Article  MathSciNet  Google Scholar 

  14. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A characteristic difference method for the variable-order fractional advection-diffusion equation. J. Appl. Math. Comput. 42, 371–386 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, Q., Turner, I., Liu, F., Ilis, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pandey, R.K., Singh, O.P., Baranwal, V.K.: An analytic algorithm for the space-time fractional advection-dispersion equation. Comput. Phys. Commun. 182, 1134–1144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  19. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MathSciNet  Google Scholar 

  20. Doha, E.H., Bhrawy, A.H.: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numer. Meth. PDEs. 25(3), 712–739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sahu, P.K., Saha Ray, S.: Legendre spectral collocation method for Fredholm integro-differential-difference equation with variable coefficients and mixed conditions. Appl. Math. Comput. 268, 575–580 (2015)

    MathSciNet  Google Scholar 

  22. Shin, B.-C., Hessari, P.: Least-squares spectral method for velocity-vorticity-pressure form of the Stokes equations, Numer. Meth. PDEs. doi:10.1002/num.22028 (2015)

  23. Jiao, Y., Wang, L.-L., Huang, C.: Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis. J. Comput. Phys. 305, 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  24. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1), 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: An application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Modell. 38, 1434–1448 (2014)

    Article  MathSciNet  Google Scholar 

  29. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, X., Huang, C.: Numerical solution of fractional integro-differential equations by a hybrid collocation method. Appl. Math. Comput. 219, 6750–6760 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  32. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MathSciNet  Google Scholar 

  33. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional sub-diffusion and reaction sub-diffusion equations. J. Comput. Nonlin. Dyn. 10(2) (2015). 021019

  34. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation, Calcolo. doi:10.1007/s10092-014-0132-x (2015)

  35. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35, 4103–4116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Abbaszade, M., Mohebbi, A.: Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry. Iran. J. Math. Chem. 3, 195–220 (2012)

    MATH  Google Scholar 

  39. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. 64(4), 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reactionsubdiffusion process based on a meshless method. J. Comput. App. Math. 280, 14–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Parvizi, M., Eslahchi, M.R., Dehghan, M.: Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer. Algor. 68(3), 601–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ding, H., Li, C.: Mixed spline function method for reaction-subdiffusion equations. J. Comput. Phys. 242, 103–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Main, M., Delves, L.M.: The convergence rates of expansions in Jacobi polynomials. Numer. Math. 27, 219–225 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bavinck, H.: On absolute convergence of Jacobi series. J. Appr. Theory 4, 387–400 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  46. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numer. Algor. 42(2), 137–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Doha, E.H., Bhrawy, A.H., Abd-Elhameed, W.M.: Jacobi spectral Galerkin method for elliptic Neumann problems. Numer. Algor. 50(1), 67–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H. A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer Algor 73, 91–113 (2016). https://doi.org/10.1007/s11075-015-0087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0087-2

Keywords

Mathematics Subject Classification (2010)

Navigation