Skip to main content
Log in

Simplified anti-Gauss quadrature rules with applications in linear algebra

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The need to compute inexpensive estimates of upper and lower bounds for matrix functions of the form w T f(A)v with \(A\in {\mathbb {R}}^{n\times n}\) a large matrix, f a function, and \(v,w\in {\mathbb {R}}^{n}\) arises in many applications such as network analysis and the solution of ill-posed problems. When A is symmetric, u = v, and derivatives of f do not change sign in the convex hull of the spectrum of A, a technique described by Golub and Meurant allows the computation of fairly inexpensive upper and lower bounds. This technique is based on approximating v T f(A)v by a pair of Gauss and Gauss-Radau quadrature rules. However, this approach is not guaranteed to provide upper and lower bounds when derivatives of the integrand f change sign, when the matrix A is nonsymmetric, or when the vectors v and w are replaced by “block vectors” with several columns. In the latter situations, estimates of upper and lower bounds can be computed quite inexpensively by evaluating pairs of Gauss and anti-Gauss quadrature rules. When the matrix A is large, the dominating computational effort for evaluating these estimates is the evaluation of matrix-vector products with A and possibly also with A T. The calculation of anti-Gauss rules requires one more matrix-vector product evaluation with A and maybe also with A T than the computation of the corresponding Gauss rule. The present paper describes a simplification of anti-Gauss quadrature rules that requires the evaluation of the same number of matrix-vector products as the corresponding Gauss rule. This simplification makes the computational effort for evaluating the simplified anti-Gauss rule negligible when the corresponding Gauss rule already has been computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baglama, J., Fenu, C., Reichel, L., Rodriguez, G.: Analysis of directed networks via partial singular value decomposition and Gauss quadrature. Linear Algebra Appl. 456, 93–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z., Day, D., Ye, Q.: ABLE: An Adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 1060–1082 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z., Fahey, M., Golub, G.H.: Some large scale matrix computation problems. J. Comput. Appl. Math. 74, 71–89 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batagelj, V., Mrvar, A.: Pajek data sets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2006)

  5. Bellalij, M., Reichel, L., Rodriguez, G., Sadok, H.: Bounding matrix functionals via partial global block Lanczos decomposition. Appl. Numer. Math. 94, 127–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of adjacency matrices. Linear Algebra Appl. 433, 637–652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix functions. Linear Algebra Appl. 438, 2447–2474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Networks 1, 1–26 (2013)

    Article  Google Scholar 

  9. Biological Networks Data Sets of Newcastle University. Available at http://www.biological-networks.org/

  10. Brezinski, C., Fika, P., Mitrouli, M.: Moments of a linear operator on a Hilbert space, with applications to the trace of the inverse of matrices and the solution of equations. Numer. Linear Algebra Appl. 19, 937–953 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezinski, C., Fika, P., Mitrouli, M.: Estimations of the trace of powers of positive self-adjoint operators by extrapolation of the moments. Electron. Trans. Numer. Anal. 39, 144–155 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Calvetti, D., Golub, G.H., Reichel, L.: An adaptive Chebyshev iterative method for nonsymmetric linear systems of equations based on modified moments. Numer. Math. 67, 21–40 (1997)

    Article  MATH  Google Scholar 

  13. Calvetti, D., Hansen, P.C., Reichel, L.: L-curve curvature bounds via Lanczos bidiagonalization. Electron. Trans. Numer. Anal. 14, 20–35 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Computable error bounds and estimates for the conjugate gradient method. Numer. Algorithms 25, 79–88 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Calvetti, D., Reichel, L.: Application of a block modified Chebyshev algorithm to iterative solution of symmetric linear systems with multiple right hand side vectors. Numer. Math. 68, 3–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calvetti, D., Reichel, L., Sgallari, F.: Application of anti-Gauss quadrature rules in linear algebra. In: Gautschi, W., Golub, G.H., Opfer, G. (eds.) Applications and Computation of Orthogonal Polynomials, pp 41–56. Birkhäuser, Basel (1999)

    Chapter  Google Scholar 

  17. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Network analysis via partial spectral factorization and Gauss quadrature. SIAM J. Sci. Comput. 35, A2046–A2068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34, 1655–1684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fika, P., Mitrouli, M., Roupa, P.: Estimates for the bilinear form x T a −1 y with applications to linear algebra problems. Electron. Trans. Numer. Anal. 43, 70–89 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13, 1236–1264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gautschi, W.: Orthogonal Polynomials: Approximation and computation. Oxford University Press, Oxford (2004)

  24. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1993, pp. 105–156. Longman, Essex, England (1994)

    Google Scholar 

  25. Golub, G.H., Meurant, G.: Matrices, moments and quadrature with applications. Princeton University Press, Princeton (2010)

  26. Gragg, W.B.: Matrix interpretation and applications of the continued fraction algorithm Rocky Mountain. J. Math 4, 213–225 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Higham, N.J.: Functions of matrices: Theory and computation. SIAM, Philadelphia (2008)

  28. Jeong, H., Mason, S., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality of protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  29. Lambers, J.V.: Enhancement of Krylov subspace spectral methods by block Lanczos iteration. Electron. Trans. Numer. Anal. 31, 86–109 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 735–747 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marcelino, J., Kaiser, M.: Critical Paths in a Metapopulation Model of H1N1: Efficiently delaying influenza spreading through flight cancellation. PLoS Currents Influenza (2012)

  32. Morigi, S., Reichel, L., Sgallari, F.: An iterative Lavrentiev regularization method. BIT 46, 589–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Notaris, S.: Gauss-kronrod quadrature formulae - a survey of fifty years of research. Electron. Trans. Numer. Anal. 45, 371–404 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Pozza, S., Pranić, M.S., Strakoš, Z.: Gauss quadrature for quasi-definite linear functionals, IMA J. Numer. Anal., in press

  35. Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31, 2443–2450 (2003)

    Article  Google Scholar 

  36. SNAP Network Data Sets. Available at http://snap.stanford.edu/data/index.html

Download references

Acknowledgements

The authors would like to thank Gérard Meurant for comments that lead to improvements of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Dedicated to Dirk Laurie on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, H., Reichel, L. Simplified anti-Gauss quadrature rules with applications in linear algebra. Numer Algor 77, 577–602 (2018). https://doi.org/10.1007/s11075-017-0329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0329-6

Keywords

Navigation