Skip to main content
Log in

Investigation on optical properties of bilayer graphene nanoribbons

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Using density functional theory, we investigate optical properties of \(\upalpha \) and \(\upbeta \) configuration of zigzag and armchair bilayer graphene nanoribbons. We demonstrate that depending on the width and edge symmetries, bilayer graphene nanoribbons could show various optical absorption spectra. These absorption spectra obey different rules. We show that these rules are based on parities of origin and destination wave functions that contribute in the optical absorption. In longitudinal polarization, the inter sub-band transitions occur when the contributed wave functions have different parities. However, in transverse direction, transitions existing between the same parities. This rule is followed by zigzag bilayer graphene nanoribbons. We check these rules for spin interactions and similar characteristic was observed. On the other hand, armchair bilayer graphene nanoribbons, based on width symmetry show either similar characteristic to zigzag or possessing mono frequency spectrum. In addition, \(\upalpha \) configuration has slightly wider absorption region than \(\upbeta \) ones. However, both show almost similar behavior in 1–2.47 \(\upmu \)m region. These characteristics could be used as a tool in experimental investigations to scrutinize edge properties of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Areshkin, D.A., Gunlycke, D., White, C.T.: Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7(1), 204 (2007)

    Article  ADS  Google Scholar 

  • Berahman, M., Sheikhi, M.H.: Optical excitations of finite length graphene nanoribbons. J. Comput. Theor. Nanosci. 8(1), 90 (2011)

    Article  Google Scholar 

  • Chen, Z., Lin, Y.M., Rooks, M.J., Avouris, P.: Graphene nano-ribbon electronics. Phys. E 40(20), 228 (2007)

    Article  Google Scholar 

  • Gundra, K., Shukla, A.: Theory of the electro-optical properties of graphene nanoribbons. Phys. Rev. B 83, 075413 (2011)

    Article  ADS  Google Scholar 

  • Gundra, K., Shukla, A.: Band structure and optical absorption in multilayer armchair graphene nanoribbons: a Pariser-Parr-Pople model study. Phys. Rev. B 84, 075442 (2011)

    Article  ADS  Google Scholar 

  • Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  • Hsu, H., Reich, L.E.: Selection rule for the optical absorption of graphene nanoribbons. Phys. Rev. B 76, 045418 (2007)

    Article  ADS  Google Scholar 

  • Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  • Kharche, N., Zhou, Y., O’Brien, K.P., Kar, S., Nayak, S.K.: Effect of layer stacking on the electronic structure of graphene nanoribbons. ACS Nano 5, 6096 (2011)

    Article  Google Scholar 

  • Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  • Li, W., Tao, R.: Edge states of monolayer and bilayer graphene nanoribbons. J. Phys. Soc. Jpn. 81, 024704 (2012)

    Article  ADS  Google Scholar 

  • Liao, W., Zhou, G., Xi, F.: Optical properties for armchair-edge graphene nanoribbons. J. Appl. Phys. 104, 126105 (2008)

  • Lin, Y.M., Avouris, P.: Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8(8), 2119 (2008)

    Article  ADS  Google Scholar 

  • Ling, C., Setzler, G., Lin, M.W., Dhindsa, K.S., Jin, J., Yoon, H.J., Kim, S.S., Ming-Cheng Cheng, M., Widjaja, N., Zhou, Z.: Electrical transport properties of Graphene nanoribbons produced from sonicating graphite in solution. Nanotechnology 22, 325201 (2011)

    Article  Google Scholar 

  • Liu, J., Wang, B., Ma, Z., Zhang, C.: Two-color terahertz response in bilayer graphene nanoribbons with spin orbit coupling. Appl. Phys. Lett. 98, 061107 (2011)

    Article  ADS  Google Scholar 

  • Matte, H.S.S.R., Subrahmanyam, K.S., Rao, C.N.R.: Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C 113(23), 9982 (2009)

    Article  Google Scholar 

  • Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  • Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  • Ogawa, T., Kanemitsu, Y.: Optical Properties Of Low-Dimensional Materials, ISBN: 978-981-02-2231-4, World Science

  • Prezzi, D., Varsano, D., Ruini, A., Marini, A., Molinari, E.: Optical properties of graphene nanoribbons: the role of many-body effects. Phys. Rev. B 77, 041404(R) (2008)

    Article  ADS  Google Scholar 

  • Sahu, B., Min, H., MacDonald, A.H., Banerjee, S.K.: Energy gaps, magnetism, and electric-field effects in bilayer graphene nanoribbons. Phys. Rev. B 78, 045404 (2008)

    Article  ADS  Google Scholar 

  • Santos, H., Ayuela, A., Chico, L., Artacho, E.: van der Waals interaction in magnetic bilayer graphene nanoribbons. Phys. Rev. B 85, 245430 (2012)

    Article  ADS  Google Scholar 

  • Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  • Sasaki, K., Kato, K., Tokura, Y., Oguri, K., Sogawa, T.: Theory of optical transitions in graphene nanoribbons. Phys. Rev. B 84, 085458 (2011)

    Article  ADS  Google Scholar 

  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-\(N\) materials simulation. J. Phys. Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  • Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  • Talyzin, A.V., Luzan, S., Anoshkin, I.V., Nasibulin, A.G., Jiang, H., Kauppinen, E.I., Mikoushkin, V.M., Shnitov, V.V., Marchenko, D.E., Noréus, D.: Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons. ACS Nano 5(6), 5132 (2011)

    Article  Google Scholar 

  • Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M.: Electronic transport properties of Graphene nanoribbons. New J. Phys. 11, 095016 (2009)

    Article  ADS  Google Scholar 

  • Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M.: Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel. Carbon 47(1), 124 (2009)

    Article  Google Scholar 

  • Wiser, N.: Dielectric constant with local field effects included. Phys. Rev. 129, 62 (1963)

    Article  ADS  MATH  Google Scholar 

  • Wright, A.R., Cao, J.C., Zhang”, C.: Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Phys. Rev. Lett. 103, 207401 (2009)

    Article  ADS  Google Scholar 

  • Wu, J.-Y., Chen, L.-H., Li, T.-S., Lin, M.-F.: Optical properties of graphene nanoribbon in a spatially modulated magnetic field. Appl. Phys. Lett. 97, 031114 (2010)

    Article  ADS  Google Scholar 

  • Wu, Z.-S., Ren, W., Gao, L., Liu, B., Zhao, J., Cheng, H.-M.: Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 3, 16 (2010)

    Article  Google Scholar 

  • Xie, L., Wang, H., Jin, C., Wang, X., Jiao, L., Suenaga, K., Dai, H.: Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. J. Am. Chem. Soc. 133, 10394 (2011)

    Article  Google Scholar 

  • Yang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G.: Quasi particle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett 99, 186801 (2007)

    Article  ADS  Google Scholar 

  • Yang, L., Cohen, M.L., Louie, S.G.: Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7(10), 3112 (2007)

    Article  ADS  Google Scholar 

  • Zhong, X., Pandey, R., Karna, S.P.: Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon 50, 784 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nadgaran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berahman, M., Sharifpour-Boushehri, S. & Nadgaran, H. Investigation on optical properties of bilayer graphene nanoribbons. Opt Quant Electron 47, 2103–2115 (2015). https://doi.org/10.1007/s11082-014-0085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0085-y

Keywords

Navigation