Skip to main content
Log in

Effect of replacement of Se by S on structural and physical properties of Ge–Sb–As–Se–S chalcogenide glasses

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present study, the structural and opto-mechanical properties of Ge–Sb–As–Se–S chalcogenide glasses have been investigated. For this purpose, different bulk glasses of Ge20Sb5As15Se60−xSx (0 ≤ x≤50) were prepared by conventional melt quenching technique in quartz ampoule and different characteristics of prepared glasses such as glass transition temperature, density, hardness, transmittance, optical band gap energy and refractive index were determined. The value of hardness and glass transition temperature of prepared glasses were found to increase with increasing the sulfur content as a result of formation of GeS4 tetrahedral units and increasing the network connectivity and average bonding energy. The optical energy gap (according to Tauc’s relation), transmittance and refractive index of prepared glasses are in direct relation with sulfur content. In this study, the highest value of transmittance (about 70%) and lowest value of refractive index (2–2.3) was achieved in Ge20Sb5As15Se40S20 and Ge20Sb5As15Se10S50 glasses, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anne, M., Keirsse, J., Nazabal, V., Hyodo, K., Inoue, S., Boussard-Pledel, C., Lhermite, H., Charrier, J., Yanakata, K., Loreal, O., Person, J.L., Colas, F., Compere, Ch., Bureau, B.: Chalcogenide glass optical waveguides for infrared biosensing. Sensors 9, 7398–7411 (2009)

    Article  Google Scholar 

  • Asobe, M., Ohara, T., Yokohama, I., Kaino, T.: Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fiber. Electron. Lett. 32, 1396–1397 (1996)

    Article  Google Scholar 

  • Boudebs, G., Cherukulappurath, S., Guignard, M., Troles, J., Smektala, F., Sanchez, F.: Linear optical characterization of chalcogenide glasses. Opt. Commun. 230, 331–336 (2004)

    Article  ADS  Google Scholar 

  • Brilland, L., Smektala, F., Renversez, G., Chartier, T., Troles, J., Nguyen, T., Monteville, A.: Fabrication of complex structures of holey fibers in chalcogenide glass. Opt. Exp. 14, 1280–1285 (2006)

    Article  ADS  Google Scholar 

  • Cerqua-Richardson, K.A., McKinley, J.M., Lawrence, B., Joshi, S., Villeneuve, A.: Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form. Opt. Mater. 10, 155–159 (1998)

    Article  ADS  Google Scholar 

  • Chahal, R., Starecki, F., Boussard-pledel, C., Louis Douala, J., Michel, K., Brilland, L., Braud, A., Camy, P., Bureau, B., Nazabal, V.: Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers. Sens. Actuat. B Chem. 229, 209–216 (2016)

    Article  Google Scholar 

  • Dantanarayana, H.G., Abdel-Moneim, N., Tang, Zh, Sojka, L., Sujecki, S., Furniss, D., Seddon, A.B., Kubat, I., Bang, O., Benson, T.M.: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Opt. Mater. Exp. 4(7), 1444–1455 (2014)

    Article  Google Scholar 

  • Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970)

    Article  ADS  Google Scholar 

  • El-Sayed, S.M.: Far-infrared studies of the amorphous SbxGe28-xSe72 glassy semiconductor. Semicond. Sci. Technol. 18, 337–341 (2003)

    Article  ADS  Google Scholar 

  • Fabian, M., Svab, E., Pamukchieva, V., Szekeres, A., Todorova, K., Vogel, S., Ruett, U.: Reverse Monte Carlo modeling of the neutron and X-ray diffraction data for new chalcogenide Ge–Sb–S(Se)–Te glasses. Phys. Chem. Solids 74, 1355–1362 (2013)

    Article  ADS  Google Scholar 

  • Fritzsche, H.: The origin of reversible and irreversible photo structural changes in chalcogenide glasses. Philos. Mag. B 68, 561–572 (1993)

    Article  ADS  Google Scholar 

  • Frumar, M., Frumarova, B., Wagner, T.: Amorphous and glassy semiconducting chalcogenides. Compr. Semicond. Sci. Technol. 4, 206–261 (2011)

    Article  Google Scholar 

  • Ghayebloo, M., Tavoosi, M., Rezvani, M.: Compositional modification of Se–Ge–Sb chalcogenide glasses by addition of arsenic element. Infrared Phys. Technol. 83, 62–67 (2017)

    Article  ADS  Google Scholar 

  • Goyal, D.R., Maan, A.S.: Far-infrared absorption in amorphous Sb15GexSe85−x glasses. Non Crystal. Solids 183, 182–185 (1995)

    Article  ADS  Google Scholar 

  • Guery, G., David Musgraves, J., Labrugere, Ch., Fargin, E., Cardinal, Th, Richardson, K.: Evolution of glass properties during a replacement of S by Se in Ge28Sb12S60−xSex glass network. Non Crystal. Solids 358, 1740–1745 (2012)

    Article  ADS  Google Scholar 

  • Guery G.: Influence of Iso-Structural Substitutions on Properties of Ge–(As,Sb)–(S, Se) glasses, MSC thesis, Clemson University (2010)

  • Guignard, M., Nazabal, V., Smektala, F., Adam, J.L., Bohnke, O., Duverger, C., Moreac, A., Zeghlache, H., Kudlinski, A., Martinelli, G., Quiquempois, Y.: Chalcogenide glasses based on germanium disulfide for second harmonic generation. Adv. Funct. Mater. 17, 3284–3294 (2007)

    Article  Google Scholar 

  • Han, X., Tao, H., Pan, R., Lang, Y., Shang, Ch., Xing, X., Tu, Q., Zhao, X.: Structure and vibrational modes of As–S–Se glasses: Raman scattering and Ab-initio calculations. Physics Procedia 48, 59–64 (2013)

    Article  ADS  Google Scholar 

  • Huang, C.C., Hewak, D.W.: Silver-doped germanium sulfide glass channel waveguides fabricated by chemical vapor deposition and photo-dissolution process. Thin Solid Films 500, 247–251 (2006)

    Article  ADS  Google Scholar 

  • Jiang, L., Fitzgerald, A.G., Rose, M.J., Christova, K., Manov, A., Pamukchieva, V.: X-Ray photoelectron spectroscopy studies of GexSb40−xS60 films. Optoelectron. Adv. Mater. 3, 841–846 (2001)

    Google Scholar 

  • Liu, Y.K., Zapien, J.A., Shan, Y.Y., Geng, C.Y., Lee, C.S., Lee, S.T.: Wavelength-controlled lasing in ZnxCd1−xS single-crystal nano ribbons. Adv. Mater. 17, 1372–1377 (2005)

    Article  Google Scholar 

  • Lucovsky, G., Galeener, F.L., Keezer, R.C., Geils, R.H., Six, H.A.: Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1-xSx. Phys. Rev. B 10, 5134–5146 (1974)

    Article  ADS  Google Scholar 

  • Massera J.: Nucleation and Growth of Tellurite-Based Glasses Suitable for Mid-Infrared Applications, Ph.D. thesis, Clemson University, South Carolina (2009)

  • Munzar, M., Tichy, L.: Far-infrared spectra and bonding arrangement in Ge–As–S–Se glasses. Phys. Chem. Solids 61, 1647–1652 (2000)

    Article  ADS  Google Scholar 

  • Petit, L., Carlie, N., Richardson, K., Guo, Y., Schulte, A., Campbell, B., Ferreira, B., Martin, S.: Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70-xSex. Phys. Chem. Solids 66, 1788–1794 (2005)

    Article  ADS  Google Scholar 

  • Psaila, N.D., Thomson, R.R., Bookey, H.T., Shen, S., Chiodo, N., Osellame, R., Cerllo, G., Jha, A., Kar, A.K.: Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide. Opt. Exp. 15(24), 15776–15781 (2007)

    Article  ADS  Google Scholar 

  • Ramachandran, S., Bishop, S.G.: Photo induced integrated-optic devices in rapid thermally annealed chalcogenide glasses. Sel. Top. Quant. Electron. 11, 260–270 (2005)

    Article  Google Scholar 

  • Sugai, S.: Stochastic random network model in Ge and Si chalcogenide glasses. Phys. Rev. B 35, 1345–1361 (1987)

    Article  ADS  Google Scholar 

  • Taeed, V.G., Pelusi, M.D., Eggleton, B.J., Choi, D.Y., Madden, S., Bulla, D., Luther- Davies, B.: Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides. Opt. Exp. 15, 15047–15052 (2007)

    Article  ADS  Google Scholar 

  • Tang, Zh, Shiryaev, V.S., Furniss, D., Sojka, L., Sujecki, S., Benson, T.M., Seddon, A.B., Churbanov, M.F.: Low loss Ge–As–Se chalcogenide glass fiber, fabricated using extruded preform, for mid infrared photonics. Opt. Mater. Exp. 5(8), 1722–1723 (2015)

    Article  Google Scholar 

  • Wang, X., Nie, Q., Wang, G., Sun, J., Song, B., Dai, S., Ma, H.: Investigations of Ge–Te–AgI chalcogenide glass for far-infrared application. Spectrochim. Acta Part A Mol. Bio Mol. Spectrosc. 86, 586–589 (2012)

    Article  ADS  Google Scholar 

  • Ye, B., Dai, Sh, Wang, R., Tao, G., Zhang, P.: Xu. Wang and X. Shen, Influence of the selenium content on thermo-mechanical and optical properties of Ge-Ga-Sb–S chalcogenide glasses. Infrared Phys. Technol. 77, 21–26 (2016)

    Article  ADS  Google Scholar 

  • Zakery, A., Elliott, S.R.: Optical properties and applications of chalcogenide glasses: a review. Non Crystal. Solids 330, 1–12 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezvani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayebloo, M., Rezvani, M., Tavoosi, M. et al. Effect of replacement of Se by S on structural and physical properties of Ge–Sb–As–Se–S chalcogenide glasses. Opt Quant Electron 49, 276 (2017). https://doi.org/10.1007/s11082-017-1114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1114-4

Keywords

Navigation