Skip to main content
Log in

Optical soliton solutions to eight order nonlinear Schrödinger equation using some different methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, the eight order nonlinear Schrödinger equation modeling the pulse propagation in optical fiber is discussed. Optical fibers is used for long-distance and high-performance data networking which making it the logical choice for data transmission. For this reason, it becomes important to examine these type equations. Three different useful and effective methods have been used to obtain optical soliton solutions of this equation. In addition, it is tried to give more information about the dynamic performance of the model with the help of three-dimensional graphics. Finally, the stability property of the obtained analytical solution was investigated based on Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelrahman, M.A.E., Khater, M.M.A.: The $\exp (\phi (n )) $ expansion method and its application for solving nonlinear evolution equations. Int. J. Sci. Res. 4, 2319–7064 (2015)

    Google Scholar 

  • Abdelrahman, M.A.E., Zahran, E.H.M., Khater, M.M.A.: Exact traveling wave solutions for power Law and Kerr Law Non linearity using the $\exp (\phi (n )) $-expansion method. GJSFR 14(4), 53–60 (2014)

  • Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190, 988–996 (2007)

    MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  • Adem, A.R., Khalique, C.M.: Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3465–3475 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic, New York (1995)

    MATH  Google Scholar 

  • Ali, A., Iqbal, M.A., Mohyud-Din, S.T.: Traveling wave solutions of generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony and simplified modified form of Camassa–Holm equation exp ($-\phi (\eta )$)-expansion method. Egypt. J. Basic Appl. Sci. 3(2), 134–140 (2016)

    Article  Google Scholar 

  • Ali, A., Seadawy, A.R., Lu, D.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79–88 (2017)

    Article  ADS  Google Scholar 

  • Aminikhad, H., Moosaei, H., Hajipour, M.: Exact solutions for nonlinear partial differential equations via exp-function method. Numer. Methods Partial Differ. Equ. 26, 1427–1433 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D.: Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stability. Optik 138, 40–49 (2017)

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D.: Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications. Opt. Quantum Electron. 50(11), 1–16 (2018)

    Article  Google Scholar 

  • Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61(19), 1550–1555 (2014)

    Article  ADS  Google Scholar 

  • Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton solutions to Fokas-lenells equation using some different methods. Optik 173, 21–31 (2018)

  • Bourkoff, E., Zhao, W., Joseph, R.I., Christodoulides, D.N.: Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. Opt. Lett. 12(4), 272–274 (1987)

    Article  ADS  Google Scholar 

  • Dai, C.Q., Zhang, J.F.: Jacobian elliptic function method for nonlinear differential-difference equations. Chaos Solitons Fractals 27, 1042–1047 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • DeMartini, F., Townes, C.H., Gustafson, T.K., Kelley, P.L.: Self-steepening of light pulses. Phys. Rev. 164(2), 312–323 (1967)

    Article  ADS  Google Scholar 

  • Demircan, A., Bandelow, U., Pietrzyk, M., Kanattšikov, I.: Higher-order solitons and modulation instability in optical fibers. Handbook of solitons: Research, technology and applications. Nova Science Publishers, Inc., New York (2009)

  • Dieu-donne, G., Tiofack, C.L., Seadawy, A., Hubert, M.B., Betchewe, G., Serge, D.Y.: Propagation of W-shaped, M-shaped and other exotic optical solitons in the perturbed Fokas–Lenells equation. Eur. Phys. J. Plus 135(4), 371 (2020)

    Article  Google Scholar 

  • Ebaid, A., Aly, E.H.: Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion 49(2), 296–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • EL-Wakil, S.A., Abdou, M.A.: Method, new exact travelling wave solutions using modified extented tanh-function. Chaos Solitons Fractals 31, 840–852 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giresunlu, I.B., Özkan, Y.S., Yaşar, E.: On the exact solutions, lie symmetry analysis, and conservation laws of Schamel–Korteweg–de Vries equation. Math. Methods Appl. Sci. 40(11), 3927–3936 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)

    Article  ADS  Google Scholar 

  • He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–809 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hu, W.Q., Gao, Y.T., Zhao, C., Feng, Y.J., Su, C.Q.: Oscillations in the interactions among multiple solitons in an optical fibre. Z. Naturforschung A 71(12), 1079–1091 (2016)

    Article  ADS  Google Scholar 

  • Islam, R., Alam, M.N., Hossain, A.S., Roshid, H.O., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via Exp ($-\phi (\eta )$)-expansion method. Glob. J. Sci. Front. Res. 13(11), 63–71 (2013)

    Google Scholar 

  • Khater, M.M.A., Zahran, E.H.M.: The modified simple equation method and its applications for solving some nonlinear evolutions equations in mathematical physics. Jokull J. 64(5), 297–312 (2014)

  • Krökel, D., Halas, N.J., Giuliani, G., Grischkowsky, D.: Dark-pulse propagation in optical fibers. Phys. Rev. Lett. 60(1), 29–32 (1988)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24(5), 1217–1231 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 206, 164335 (2020)

    Article  ADS  Google Scholar 

  • Li, M., Xu, T., Wang, L.: Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 80, 1451–1461 (2015)

    Article  Google Scholar 

  • Li, H., Chen, D., Zhang, H., Wu, C., Wang, X.: Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. Appl. Energy 185, 244–253 (2017)

    Article  Google Scholar 

  • Li, C., Chen, L., Li, G.: Optical solitons of space-time fractional Sasa–Satsuma equation by F-expansion method. Optik 224, 165527 (2020)

    Article  ADS  Google Scholar 

  • Li, Y., Lu, D., Arshad, M., Xu, X.: New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications. Optik 226, 165386 (2021)

    Article  ADS  Google Scholar 

  • Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 207, 164467 (2020)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A.: Exact solitons to generalized resonant dispersive nonlinear Schrödinger-equation with power law nonlinearity. Optik 130, 178–183 (2017)

    Article  ADS  Google Scholar 

  • Mohyud-Din, S.T.: Solution of nonlinear differential equations by exp-function method. World Appl. Sci. J. 7, 116–147 (2009)

    MathSciNet  Google Scholar 

  • Njhoft, J.H.B., Roelofs, G.H.M.: Prolongation structures of a higher-order nonlinear Schrödinger equation. J. Phys. A Math. Gen. 25, 2116–2403 (1992)

    Google Scholar 

  • Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33(5), 1807–1816 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Roshid, H.O., Kabir, M.R., Bhowmik, R.C., Datta, B.K.: Investigation of Solitary wave solutions for Vakhnenko–Parkes equation via exp-function and Exp (-$\phi (\xi $)-expansion method. SpringerPlus 3(1), 1–10 (2014)

    Article  Google Scholar 

  • Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Courier Dover Publications, Mineola (2018)

    MATH  Google Scholar 

  • Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method. Eur. Phys. J. Plus 130, 1–10 (2015)

    Article  Google Scholar 

  • Seadawy, A.R., Lu, D., Yue, C.: Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability. J. Taibah Univ. Sci. 11(4), 623–633 (2017)

    Article  Google Scholar 

  • Seadawy, A.R., Arshad, M., Lu, D.: The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrödinger equation and its applications. Waves Random Complex Media (2020a). https://doi.org/10.1080/17455030.2020.1802085

  • Seadawy, A.R., Iqbal, M., Lu, D.: Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics. Indian J. Phys. 94(6), 823–832 (2020b)

    Article  ADS  Google Scholar 

  • Swaters, G.E.: Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Routledge, London (2019)

    Book  Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M.: The simplest equation method to study perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1493–1499 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model 40, 499–508 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The tanh-method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004b)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The tanh method: solutions and periodic solutions for the Dodd–Mikhailov and the Tziteica–Dodd–Bullough equations. Chaos Solitons Fractals 25, 55–63 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yue, C., Khater, M.M., Attia, R.A., Lu, D.: The plethora of explicit solutions of the fractional KS equation through liquid–gas bubbles mix under the thermodynamic conditions via Atangana-Baleanu derivative operator. Adv. Differ. Equ. 2020(1), 1–12 (2020a)

    Article  MathSciNet  Google Scholar 

  • Yue, C., Khater, M.M., Inc, M., Attia, R.A., Lu, D.: Abundant analytical solutions of the fractional nonlinear (2+1)-dimensional BLMP equation arising in incompressible fluid. Int. J. Mod. Phys. B 34(09), 2050084 (2020b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeşim Sağlam Özkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünal Yılmaz, E., Sağlam Özkan, Y. Optical soliton solutions to eight order nonlinear Schrödinger equation using some different methods. Opt Quant Electron 53, 257 (2021). https://doi.org/10.1007/s11082-021-02906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02906-y

Keywords

Mathematics Subject Classification

Navigation