Skip to main content
Log in

Effect of Fast Multiple Rotation Rolling on the Oxidation Resistance of Super304H Stainless Steel in High-Temperature Water Vapor

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this project, Super304H stainless steel was subjected to fast multiple rotation rolling (FMRR) and a refined nano-structured surface layer was fabricated after the FMRR treatment. The morphology and microstructure of the refined layer were observed by optical microscopy and X-ray diffraction. Then the oxidation behavior of the stainless steel with and without FMRR treatment was investigated in the temperature range of 550–750 °C for 25 h in water vapor environment. The compositions and microstructures of the oxide scales were characterized by SEM and EDX. Severe plastic deformation was observed in the refined layer and the grain size on the surface was found to decline gradually with increasing treatment pressure, which led to higher Cr content in the refined layer and thinner thickness of the oxide scales when compared with the untreated sample. Super304H stainless steel was found to exhibit improved oxidation resistance in high temperature water vapor after the FMRR treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. B. Dooley, I. G. Wright, P. F. Tortorelli, Program on technology innovation: oxide growth and exfoliation on alloys exposed to steam. EPRI Report. (Palo Alto, CA, 2007).

  2. Y. Zengwu, F. Min, W. Xuegang, et al., Oxidation of Metals 77, 17 (2012 ).

    Article  Google Scholar 

  3. J. Zhang, X. Peng, D. J. Young, et al., Surface and Coatings Technology 217, 162 (2013).

    Article  Google Scholar 

  4. Z. B. Wang, J. Lu and K. Lu, Surface and Coatings Technology 201, 2796 (2006).

    Article  Google Scholar 

  5. B. Arifvianto, M. Mahardika, P. Dewo, et al., Materials Chemistry and Physics 125, 418 (2011).

    Article  Google Scholar 

  6. A. Q. Lü, Y. Zhang, Y. Li, et al., Acta Metallurgica Sinica (English Letters) 19, 183 (2006).

    Article  Google Scholar 

  7. N. R. Tao, M. L. Sui, J. Lu, et al., Nanostructured Materials 11, 433 (1999).

    Article  Google Scholar 

  8. G. Liu, J. Lu and K. Lu, Materials Science and Engineering: A 286, 91 (2000).

    Article  Google Scholar 

  9. Y. Todaka, M. Umemoto and K. Tsuchiya, Materials Transactions 45, 376 (2004).

    Article  Google Scholar 

  10. T. Watanabe, K. Hattori, M. Handa et al., in Proceedings of ICSP8, eds L. Wagner, (Garmisch-Partenkirchen, 2002) pp. 305–310.

  11. T. Chaise, J. Li, D. Nélias, et al., Journal of Materials Processing Technology 212, 2080 (2012).

    Article  Google Scholar 

  12. G. Liu, S. C. Wang, X. F. Lou, et al., Scripta Materialia 44, 1791 (2001).

    Article  Google Scholar 

  13. S. Bagherifard, I. Fernández Pariente, R. Ghelichi, et al., Procedia Engineering 2, 1683 (2010).

    Article  Google Scholar 

  14. Z. Ni, X. Wang, J. Wang, et al., Physica B: Condensed Matter 334, 221 (2003).

    Article  Google Scholar 

  15. P. Chui, K. Sun, C. Sun, et al., Applied Surface Science 257, 6787 (2011).

    Article  Google Scholar 

  16. P. Chui, K. Sun, C. Sun, et al., Materials & Design 35, 754 (2012).

    Article  Google Scholar 

  17. P. Chui, Y. Liu, Y. Liang, et al., Applied Surface Science 263, 445 (2012).

    Article  Google Scholar 

  18. R. Z. Valiev and T. G. Langdon, Progress in Materials Science 51, 881 (2006).

    Article  Google Scholar 

  19. R. Z. Valiev, A. V. Korznikov and R. R. Mulyukov, Materials Science and Engineering: A 168, 141 (1993).

    Article  Google Scholar 

  20. R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, et al., Journal of Materials Research 17, 5 (2002).

    Article  Google Scholar 

  21. R. Z. Valiev, E. V. Kozlov, Y. F. Ivanov, et al., Acta Metallurgica et Materialia 42, 2467 (1994).

    Article  Google Scholar 

  22. L. Xingeng and H. Jiawen, Materials Letters 60, 339 (2006).

    Article  Google Scholar 

  23. X. Peng, J. Yan, Y. Zhou, et al., Acta Materialia 53, 5079 (2005).

    Article  Google Scholar 

  24. M. Ueda, M. Nanko, T. Maruyama, et al., High Temperature Corrosion and Protection 2000, 73 (2000).

    Google Scholar 

  25. V. B. Trindade, U. Krupp, B. Z. Hanjari, et al., Materials Research 8, 371 (2005).

    Article  Google Scholar 

  26. Y. Otoguro, M. Sakakibara, T. Saito, et al., Transactions of the Iron and Steel Institute of Japan 28, 761 (1988).

    Article  Google Scholar 

  27. K. H. Lo, C. H. Shek and J. K. L. Lai, Materials Science and Engineering: Reports 65, 39 (2009).

    Article  Google Scholar 

  28. A. D. I. Schino, I. Salvatori and J. M. Kenny, Journal of Materials Science 37, 4561 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for Central Universities under Contract No. 2014208020202 and the Wuhan University experimental technology Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Liu, H., Wan, Q. et al. Effect of Fast Multiple Rotation Rolling on the Oxidation Resistance of Super304H Stainless Steel in High-Temperature Water Vapor. Oxid Met 84, 259–268 (2015). https://doi.org/10.1007/s11085-015-9553-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9553-4

Keywords

Navigation