Skip to main content
Log in

Assessment of a Mechanical Model Associated with Oxide Scale Growth on T91 Steel at 550 °C Under Wet Atmosphere

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The Deflection Test in Monofacial Oxidation (DTMO) was used to assess the parameters of a phenomenological model aimed to represent the mechanical behavior of the martensitic T91 steel during oxidation at 550 °C under wet atmosphere. The constitutive equations of the mechanical model were determined from the knowledge of the growth mechanism of the oxide scale. Some model parameters were found in the literature and complementary data were obtained by the comparison between experimental DTMO curve and simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. C. Demizieux, C. Desgranges, L. Martinelli and J. Favergeon, International Corrosion Conference Series 2015 (2015).

  2. G. Stoney, Proceedings of the Royal Society London A82, 1712 (1909).

    Google Scholar 

  3. U. R. Evans, An Introduction to Metallic Corrosion, (1948).

  4. A. Brenner and S. Senderoff, The Journal of Research of NIST 42, 105 (1949).

  5. W. N. Bradshaw and S. G. Clarke, Journal of the Electrodepositors’ Technical Society 25 (1949).

  6. D. D. Dankov and P. V. Churaev, Dokl. Akad. Nauk SSSR 73, 1221 (1950).

    Google Scholar 

  7. D. A. Vermilyea, Journal of Electrochemical Society 104, 140 (1957).

    Article  Google Scholar 

  8. J. G. Zhao and A. M. Huntz, Journal of Materials Science 19, 3166 (1984).

    Article  Google Scholar 

  9. A. M. Huntz, G. Calvarin Amiri, H. E. Evans and G. Cailletaud, Oxidation of Metals 57, 499 (2002).

    Article  Google Scholar 

  10. H. E. Evans, International Materials Reviews 40, 1 (1995).

    Article  Google Scholar 

  11. W. Przybilla and M. Schütze, Oxidation of Metals 58, 103 (2002).

    Article  Google Scholar 

  12. S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang and S. T. Tu, Journal of Applied Physics 110, 2011 (063511).

    Article  Google Scholar 

  13. S. Maharjan, X. Zhang and Z. Wang, Oxidation of Metals 77, 93 (2012).

    Article  Google Scholar 

  14. L. Kurpaska, “Analysis of mechanical stresses in oxide films at high temperature, application to the Zr/ZrO2 system”, PhD Thesis, Université de Technologie de Compiègne, (2012).

  15. D. Fettré, S. Bouvier, J. Favergeon and L. Kurpaska, Applied Surface Science 357, 777 (2015).

    Article  Google Scholar 

  16. J. L. Ruan, Y. Pei and D. Fang, Corrosion Science 66, 315 (2013).

    Article  Google Scholar 

  17. N. Vallino, “Modèle thermos-mécanique pour l’analyse du comportement des interfaces metal-oxyde. Etude du phénomène de fissuration périodique”, PhD Thesis, Université de Technologie de Compiègne, (2000).

  18. L. Maréchal, “Contribution à l’étude de la résistance à l’oxydation d’alliages Fe–Cr–Al type ODS: aspects cinétiques, diffusionnels et microstructuraux”, PhD Thesis, Université Paris Sud, (2002).

  19. I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).

    Article  Google Scholar 

  20. E. M. Haney, F. Dalle, M. Sauzay, L. Vincent, I. Tournié, L. Allais and B. Fournier, Materials Science and Engineering A510–511, 99 (2009).

    Article  Google Scholar 

  21. L. Kloc and V. Sklenicka, Materials Science and Engineering A234–236, 962 (1997).

    Article  Google Scholar 

  22. D. R. Clarke, Acta Materialia 51, 1393 (2003).

    Article  Google Scholar 

  23. A. G. Crouch and J. Robertson, Acta Metallurgica Materialia 38, 2567 (1990).

    Article  Google Scholar 

  24. B. Fournier, “Fatigue-fluage des aciers martensitiques à 9–12% Cr: Comportement et endommagement”, PhD Thesis, Mines Paris-Tech., (2007).

  25. B. Panicaud, “Contraintes de « croissance » et cinétiques d’oxydation dans des couches d’oxydes thermiques de Fe et Ni, étude in situ par Diffraction des rayons X et modélisation”, PhD Thesis, Université de La Rochelle, (2004).

  26. N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont and D. Monceau, Oxidation of Metals 73, 139 (2010).

    Article  Google Scholar 

  27. S. Osgerby, Materials at High Temperatures 17, 307 (2000).

    Article  Google Scholar 

  28. L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).

    Article  Google Scholar 

  29. M. C. Demizieux, “ Etude des mécanismes de formation et d’écaillage des couches d’oxydes formées après oxydation de l’alliage T91 en milieu vapeur d’eau à 550 °C”, PhD Thesis, Université de Technologie de Compiègne, (2015).

  30. H. Evin, “ Low Cr alloys with an improved high temperature corrosion resistance”, PhD Thesis, Université de Bourgogne, (2010).

  31. J. L. Smialek, JOM 58, 29 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Favergeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demizieux, MC., Favergeon, J., Martinelli, L. et al. Assessment of a Mechanical Model Associated with Oxide Scale Growth on T91 Steel at 550 °C Under Wet Atmosphere. Oxid Met 88, 57–70 (2017). https://doi.org/10.1007/s11085-016-9698-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9698-9

Keywords

Navigation