Skip to main content

Advertisement

Log in

Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Concentrating solar power plant designers are interested in supercritical CO2 (sCO2) for the power block to achieve > 50% electrical efficiency at > 700 °C. The goal of this project was to develop a long-term (> 100 kh) lifetime model for sCO2 compatibility using 10–15 kh laboratory exposures. Three Ni-based alloys (625, 282 and 740H) and an advanced austenitic stainless steel were evaluated in long-term exposures at 700–800 °C using 500-h cycles in laboratory air, 0.1 MPa industrial grade (IG) CO2 and 30 MPa supercritical IG CO2 and using 10-h cycles in 0.1 MPa IG CO2 and O2. Mass change data and quantification of the oxide scale thickness and depth of internal attack after 1000–10,000 h exposures at 750 °C indicate that these materials are compatible with the sCO2 environments with modeling used to predict long-term behavior. Comparison of the 0.1 and 30 MPa 500-h cycle results did not show a significant effect of pressure on the reaction, and no significant internal carburization was observed under these conditions, even for the stainless steel, suggesting that chromia scales may be better C diffusion barriers than expected. For the Ni-based alloys, thermal cycling to simulate the solar duty cycle did not result in scale spallation after 15 kh in 10-h cycles or 4 kh in 1-h cycles at 750 °C. However, the stainless steel specimens formed an Fe-rich oxide after ~ 1500-h cumulative exposure time in both 1- and 10-h cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V. Dostal, P. Hejzlar and M. J. Driscoll, Nuclear Technology 154, 283 (2006).

    CAS  Google Scholar 

  2. H. Chen, D. Y. Goswami and E. K. Stefanakos, Renewable and Sustainable Energy Reviews 14, 3059 (2010).

    CAS  Google Scholar 

  3. R. J. Allam, M. R. Palmer, G. W. Brown Jr., J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita and C. Jones Jr., Energy Procedia 37, 1135 (2013).

    CAS  Google Scholar 

  4. B. D. Iverson, T. M. Conboy, J. J. Pasch and A. M. Kruizenga, Applied Energy 111, 957 (2013).

    CAS  Google Scholar 

  5. I. G. Wright, B. A. Pint, J. P. Shingledecker, and D. Thimsen, in ASME Paper #GT2013-94941, Presented at the International Gas Turbine and Aeroengine Congress and Exhibition, San Antonio, TX, June 3-7, 2013 (2013).

  6. V. T. Cheang, R. A. Hedderwick and C. McGregor, Solar Energy 113, 199 (2015).

    CAS  Google Scholar 

  7. E. G. Feher, Energy Conversion 8, 85 (1968).

    CAS  Google Scholar 

  8. C. H. Oh, T. Lillo, W. Windes, T. Totemeier, B. Ward, Richard Moore, and R. Barner, in Development Of A Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency And Testing Material Compatibility, Idaho National Laboratory Report INL/EXT-06-01271 (2006).

  9. M. W. Dunlevy, in An Exploration of the Effect of Temperature on Different Alloys in Supercritical Carbon Dioxide Environment (M.Sc. Thesis, MIT, Cambridge, 2009).

  10. T. Furukawa, Y. Inagaki and M. Aritomi, Progress in Nuclear Energy 53, 1050 (2011).

    CAS  Google Scholar 

  11. F. Rouillard, F. Charton and G. Moine, Corrosion 67, 095001 (2011).

    Google Scholar 

  12. L. Tan, M. Anderson, D. Taylor and T. R. Allen, Corrosion Science 53, 3273 (2011).

    CAS  Google Scholar 

  13. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson and T. R. Allen, Corrosion Science 60, 246 (2012).

    CAS  Google Scholar 

  14. R. Moore and T. Conboy, in Metal Corrosion in a Supercritical Carbon DioxideLiquid Sodium Power Cycle, Sandia National Laboratory Report SAND2012-0184 (2012).

  15. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson and T. R. Allen, Corrosion Science 69, 281 (2013).

    CAS  Google Scholar 

  16. J. Mahaffey, A. Kaira, M. Anderson, and K. Sridharan, in Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, September 2014, Paper #2 (2014).

  17. B. A. Pint and J. R. Keiser, JOM 67, 2615 (2015).

    CAS  Google Scholar 

  18. R. I. Olivares, D. J. Young, P. Marvig and W. Stein, Oxidation of Metals 84, 585 (2015).

    CAS  Google Scholar 

  19. H. E. McCoy, Corrosion 21, 84 (1965).

    CAS  Google Scholar 

  20. W. R. Martin and J. R. Weir, Journal of Nuclear Materials 16, 19 (1965).

    CAS  Google Scholar 

  21. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).

    CAS  Google Scholar 

  22. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2767 (2011).

    CAS  Google Scholar 

  23. D. J. Young, J. Zhang, C. Geers and M. Schütze, Materials and Corrosion 62, 7 (2011).

    CAS  Google Scholar 

  24. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed, (Elsevier, Oxford, 2016).

    Google Scholar 

  25. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).

    CAS  Google Scholar 

  26. G. H. Meier, W. C. Coons and R. A. Perkins, Oxidation of Metals 17, 235 (1982).

    CAS  Google Scholar 

  27. J. Pirón Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).

    Google Scholar 

  28. T. Gheno, D. Monceau and D. J. Young, Corrosion Science 77, 246 (2013).

    CAS  Google Scholar 

  29. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia 77, 29 (2014).

    CAS  Google Scholar 

  30. T. D. Nguyen, X. Peng, J. Q. Zhang and D. J. Young, Surface and Coatings Technology 316, 226 (2017).

    CAS  Google Scholar 

  31. P. C. Rowlands, J. C. P. Garrett, L. A. Popple, A. Whittaker and A. Hockey, Nuclear Energy 25, 267 (1986).

    CAS  Google Scholar 

  32. Y. Gong, D. J. Young, P. Kontis, Y. L. Chiu, H. Larsson, A. Shin, J. M. Pearson, M. P. Moody and R. C. Reed, Acta Materialia 130, 361 (2017).

    CAS  Google Scholar 

  33. B. A. Pint, Materials Science Forum 696, 57 (2011).

    CAS  Google Scholar 

  34. B. A. Pint, B. N. Anderson, W. J. Matthews, C. Waldhelm, and W. Treece, in ASME Paper #GT2013-94939, Presented at the International Gas Turbine and Aeroengine Congress & Exhibition, San Antonio, TX, June 37, 2013 (2013).

  35. S. Q. Zhao, X. S. Xie, G. D. Smith and S. J. Patel, Materials Science and Engineering A 355, 96 (2003).

    Google Scholar 

  36. L. M. Pike, in Superalloys 2008, eds. R. C. Reed, et al. (TMS, Warrendale, 2008), p. 191.

    Google Scholar 

  37. R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, Journal of Materials Engineering and Performance 14(3), 281 (2005).

    CAS  Google Scholar 

  38. R. Viswanathan, J. Shingledecker and R. Purgert, Power 154(8), 41 (2010).

    Google Scholar 

  39. B. A. Pint, R. Brese, and J. R. Keiser, in ASME Paper #GT2017-65066, for the International Gas Turbine and Aeroengine Congress and Exhibition, Charlotte, NC, June 2630, 2017 (2017).

  40. R. G. Brese, J. R. Keiser and B. A. Pint, Oxidation of Metals 87, 631 (2017).

    CAS  Google Scholar 

  41. B. A. Pint, in Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives, eds. E. Ott et al. (TMS, Warrendale, 2018), p. 165.

  42. B. A. Pint, K. A. Unocic, R. G. Brese and J. R. Keiser, Materials at High Temperature 35, 39 (2018).

    CAS  Google Scholar 

  43. B. A. Pint and K. A. Unocic, JOM 70, 1511 (2018).

    CAS  Google Scholar 

  44. B. A. Pint, J. Lehmusto, M. J. Lance and J. R. Keiser, Materials and Corrosion 70, 1400 (2019).

    CAS  Google Scholar 

  45. B. A. Pint, R. G. Brese and J. R. Keiser, Materials and Corrosion 68, 151 (2017).

    CAS  Google Scholar 

  46. B. A. Pint, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 58, 73 (2002).

    CAS  Google Scholar 

  47. M. J. Lance, D. N. Leonard, and B. A. Pint, in Proceedings of the 6th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, March 2018, Paper #117 (2018).

  48. R. Pillai, W. G. Sloof, A. Chyrkin, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 32, 57 (2015).

    CAS  Google Scholar 

  49. R. Pillai, H. Ackermann and K. Lucka, Corrosion Science 69, 181 (2013).

    CAS  Google Scholar 

  50. E. Essuman, L. R. Walker, P. J. Maziasz and B. A. Pint, Materials Science and Technology 29, 822 (2013).

    CAS  Google Scholar 

  51. B. A. Pint and B. P. Thiesing, in NACE Paper C2015-5919, Houston, TX, Presented at NACE Corrosion 2015, Dallas, TX, March 2015 (2015).

  52. C. Wells, W. Batz and R. F. Mehl, Transactions of the American Institute of Mining and Metallurgical Engineers 188, 553 (1950).

    CAS  Google Scholar 

  53. Z. Tökei, K. Hennesen, H. Viefhaus and H. J. Grabke, Materials Science Technology 16, 1129 (2000).

    Google Scholar 

  54. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

    CAS  Google Scholar 

  55. P. J. Ennis and W. J. Quadakkers, in High Temperature Alloys, Their Exploitable Potential, eds. J. B. Marriott, M. Merz, J. Nihoul and J. Ward (Elsevier, London, 1985), p. 465.

    Google Scholar 

  56. B. A. Pint, in NACE Paper 14-4279, Houston, TX, Presented at NACE Corrosion 2014, San Antonio, TX, March 2014 (2014).

  57. W. J. Quadakkers and M. J. Bennett, Materials Science Technology 10, 126 (1994).

    CAS  Google Scholar 

  58. R. Duan, A. Jalowicka, K. A. Unocic, B. A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai and W. J. Quadakkers, Oxidation of Metals 87, 11 (2017).

    CAS  Google Scholar 

  59. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    CAS  Google Scholar 

  60. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 75, 143 (2011).

    CAS  Google Scholar 

  61. S. C. Kung, J. P. Shingledecker, I. G. Wright, A. S. Sabau, B. M. Tossey, and T. Lolla, in Proceedings of the 6th International Symposium on Supercritical CO2 Power Cycles, Pittsburgh, PA, March 2018, Paper #5 (2018).

  62. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner and W. J. Quadakkers, Corrosion Science 96, 32 (2015).

    CAS  Google Scholar 

  63. I. Wolf and H. J. Grabke, Solid State Communications 54, 5 (1985).

    CAS  Google Scholar 

  64. H. J. Lee, H. Kim, S. H. Kim and C. Jang, Corrosion Science 99, 227 (2015).

    CAS  Google Scholar 

  65. S. Sarrade, D. Férona, F. Rouillard, S. Perrin, R. Robin, J.-C. Ruiz and H.-A. Turc, Journal of Supercritical Fluids 120, 235 (2017).

    CAS  Google Scholar 

  66. B. A. Pint, S. Dryepondt, M. P. Brady, and Y. Yamamoto, in ASME Paper #GT2013-94940, Presented at the International Gas Turbine and Aeroengine Congress and Exhibition, San Antonio, TX, June 37, 2013 (2013).

  67. H. E. Evans, International Materials Review 40, 1 (1995).

    CAS  Google Scholar 

  68. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    CAS  Google Scholar 

  69. B. A. Pint, K. A. Unocic, and J. R. Keiser, in Proceedings of the 3rd European Conference on Supercritical CO2 (sCO2) Power Systems, (2019) p. 238. https://doi.org/10.17185/duepublico/48899.

  70. D. Fleming and A. Kruizenga, Identified Corrosion and Erosion Mechanisms in SCO2 Brayton Cycles, (Sandia National Laboratory Report, SAND2014-15546, Albuquerque, 2014).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Howell, M. Stephens, G. Garner, T. M. Lowe and T. Jordan for assistance with the experimental work at ORNL. M. Romedenne and K. A. Kane at ORNL provided helpful comments on the manuscript. This research was funded by the SunShot Initiative under the US Department of Energy’s Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Program: SuNLaMP award number DE-EE0001556. Special thanks to the Project partners on the team, Brayton Energy, LLC and alloy providers, Haynes International (V. Deodeshmukh), Special Metals (S. Coryell, J. deBarbadillo, B. Baker) and Sandvik (K. Day) and the helpful input and guidance of the DOE SETO Project monitors (L. Irwin and M. Bauer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Pint.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A., Pillai, R., Lance, M.J. et al. Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. Oxid Met 94, 505–526 (2020). https://doi.org/10.1007/s11085-020-10004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10004-9

Keywords

Navigation