Skip to main content
Log in

Shielded Sliding Discharge-Assisted Hydrocarbon Selective Catalytic Reduction of NOx over Ag/Al2O3 Catalysts Using Diesel as a Reductant

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The nonthermal plasma generated in a shielded sliding discharge reactor was used to reform diesel for the hydrocarbon-selective catalytic reduction (HC-SCR) of NOx on Ag/Al2O3 catalysts. Compared with raw diesel, the reformed diesel enhanced the NOx reduction efficiency, mitigated hydrocarbon poisoning of the catalyst and reduced the fuel penalty for the HC-SCR reaction. The NOx conversion values obtained with a commercial Ag/Al2O3 catalyst exceeded that of a 2.0 wt% Ag/Al2O3 catalyst prepared by wet impregnation. A significant amount of NH3 was produced as a by-product during the HC-SCR reaction, which suggests that further NOx conversion enhancement can be achieved by placing a second NH3-SCR catalyst in series with the Ag/Al2O3 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim MH, Nam IS (2005) In: Spivey JJ (ed) Catalysis. RSC, Cambridge, pp 116–185

    Chapter  Google Scholar 

  2. Iwamoto M, Yahiro H, Yuu Y, Shundo S, Mizuno N (1990) Shokubai 32:430–438

    CAS  Google Scholar 

  3. Burch R, Breen JP, Meunier FC (2002) Appl Catal B Environ 39:283–303

    Article  CAS  Google Scholar 

  4. Käspar J, Fornasiero P, Hickey H (2003) Catal Today 77:419–449

    Article  Google Scholar 

  5. He H, Zhang X, Wu Q, Zhang C, Yu Y (2008) Catal Surv Asia 12:38–55

    Article  CAS  Google Scholar 

  6. Roy S, Hegde MS, Madras G (2009) Appl Energy 86:2283–2297

    Article  CAS  Google Scholar 

  7. Weibel M, Waldbusser N, Wunsch R, Chatterjee D, Bandl-Konrad B, Krutzsch B (2009) Top Catal 52:1702–1708

    Article  CAS  Google Scholar 

  8. Granger P, Parvulescu VI (2011) Chem Rev 111:3155–3207

    Article  CAS  Google Scholar 

  9. Kannisto H, Arve K, Pingel T, Hellman A, Härelind H, Eränen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644–653

    Article  CAS  Google Scholar 

  10. Seker E, Cavataio J, Gulari E, Lorpongpaiboon P, Osuwan S (1999) Appl Catal A Gen 183:121–134

    Article  CAS  Google Scholar 

  11. Juez AI, Hungria AB, Arias AM, Fuerte A, Garcia MF, Anderson JA, Conesa JC, Soria J (2003) J Catal 217:310–323

    Google Scholar 

  12. Kannisto H, Ingelsten HH, Skoglundh M (2009) J Mol Catal A Chem 302:86–96

    Article  CAS  Google Scholar 

  13. Hoost TE, Kudla RJ, Collins KM, Chattha MS (1997) Appl Catal B Environ 13:59–67

    Article  CAS  Google Scholar 

  14. Meunier FC, Breen JP, Zuzaniuk V, Olsson M, Ross JRH (1999) J Catal 187:493–505

    Article  CAS  Google Scholar 

  15. Shimizu K, Shibata J, Yoshida H, Satsuma A, Hattori T (2001) Appl Catal B Environ 30:151–162

    Article  CAS  Google Scholar 

  16. Lindfors LE, Eränen K, Klingstedt F, Murzin DY (2004) Top Catal 28:185–189

    Article  CAS  Google Scholar 

  17. Bethke KA, Kung HH (1997) J Catal 172:93–102

    Article  CAS  Google Scholar 

  18. She X, Stephanopoulos MF (2006) J Catal 237:79–93

    Article  CAS  Google Scholar 

  19. Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B Environ 49:159–171

    Article  CAS  Google Scholar 

  20. Zhang C, He H, Shuai S, Wang J (2007) Environ Pollut 147:415–421

    Article  CAS  Google Scholar 

  21. Houel V, Millington P, Rajaram R, Tsolakis A (2007) Appl Catal B Environ 73:203–207

    Article  CAS  Google Scholar 

  22. Fernandez JR, Tsolakis A, Ahmadinejad M, Sitshebo S (2010) Energy Fuel 24:992–1000

    Article  Google Scholar 

  23. Sawatmongkhon B, Tsolakis A, Sitshebo S, Fernández JR, Ahmadinejad M, Collier J, Rajaram RR (2010) Appl Catal B Environ 97:373–380

    Article  CAS  Google Scholar 

  24. Creaser D, Kannisto H, Sjöblom J, Ingelsten HH (2009) Appl Catal B Environ 90:18–28

    Article  CAS  Google Scholar 

  25. Carucci JRH, Arve K, Bártová S, Eränen K, Salmi T, Murzin DY (2011) Catal Sci Technol 1:1456–1465

    Article  Google Scholar 

  26. Satokawa S (2000) Chem Lett 29:294–295

    Article  Google Scholar 

  27. Shibata J, Shimizu K, Satokawa S, Satsuma A, Hattori T (2003) Phys Chem Chem Phys 5:2154–2160

    Article  CAS  Google Scholar 

  28. Breen JP, Burch R, Hardacre C, Hill CJ, Rioche C (2007) J Catal 246:1–9

    Article  CAS  Google Scholar 

  29. Richter M, Bentrup U, Eckelt R, Schneider M, Pohl MM, Fricke R (2004) Appl Catal B Environ 51:261–274

    Article  CAS  Google Scholar 

  30. Kim MK, Kim PS, Baik JH, Nam IS, Cho BK, Oh SH (2011) Appl Catal B Environ 105:1–14

    Article  CAS  Google Scholar 

  31. Chansai S, Burch R, Hardacre C (2012) J Catal 295:223–231

    Article  CAS  Google Scholar 

  32. Penetrante BM, Brusasco RM, Merritt BT, Pitz WJ, Vogtlin GE (1999) SAE paper no. 1999-01-3637. doi:10.4271/1999-01-3637

  33. Hoard JW, Panov AG (2001) SAE paper no. 2001-01-3512. doi:10.4271/2001-01-3512

  34. Hammer T, Kishimoto T, Krutzsch B, Andorf R, Plog C (2001) SAE paper no. 2001-01-3567. doi:10.4271/2001-01-3567

  35. Miessner H, Francke KP, Rudolph R, Hammer T (2002) Catal Today 75:325–330

    Article  CAS  Google Scholar 

  36. Sitshebo S, Tsolakis A, Theinnoi K (2009) Int J Hydrogen Energy 34:7842–7850

    Article  CAS  Google Scholar 

  37. Lee DH, Kim KT, Cha MS, Song YH (2010) Int J Hydrogen Energy 35:4668–4675

    Article  CAS  Google Scholar 

  38. Cho BK, Lee JH, Crellin CC, Olsona KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam IS (2012) Catal Today 191:20–24

    Article  CAS  Google Scholar 

  39. Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2011) Int J Hydrogen Energy 36:11718–11726

    Article  CAS  Google Scholar 

  40. Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2012) Int J Hydrogen Energy 37:3225–3233

    Article  CAS  Google Scholar 

  41. Malik MA, Minamitani Y, Schoenbach KH (2005) IEEE Trans Plasma Sci 33:50–56

    Article  CAS  Google Scholar 

  42. Malik MA, Kolb JF, Sun Y, Schoenbach KH (2011) J Hazard Mater 197:220–228

    Article  CAS  Google Scholar 

  43. Malik MA, Xiao S, Schoenbach KH (2012) J Hazard Mater 209–210:293–298

    Article  Google Scholar 

  44. Malik MA, Schoenbach KH (2014) Plasma Chem Plasma Process. doi:10.1007/s11090-014-9528-2

    Google Scholar 

  45. Malik MA, Schoenbach KH (2014) Plasma Chem Plasma Process 34:93–109

    Article  CAS  Google Scholar 

  46. Schoenbach KH, Malik MA (2014) Plasma Chem Plasma Process 34:39–54

    Article  CAS  Google Scholar 

  47. Malik MA, Schoenbach KH (2012) J Phys D Appl Phys 45:132001

    Article  Google Scholar 

  48. Malik MA, Hughes D, Malik A, Xiao S, Schoenbach KH (2013) Plasma Chem Plasma Process 33:271–279

    Article  CAS  Google Scholar 

  49. Khani MR, Guy ED, Gharibi M, Shahabi SS, Khosravi A, Norouzi AA, Shokri B (2014) Chem Eng J 237:169–175

    Article  CAS  Google Scholar 

  50. Demidyuk V, Hardacre C, Burch R, Mhadeshwar A, Norton D, Hancu D (2011) Catal Today 164:515–519

    Article  CAS  Google Scholar 

  51. Shimizu K, Shibata J, Satsuma A (2006) J Catal 239:402–409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by General Electric; the Commonwealth Research Commercialization Fund (Grant No. MF13-019) from Virginia’s Center for Innovative Technology; the Frank Reidy Fellowship in Environmental Plasma Research and other internal funds from the Frank Reidy Research Center for Bioelectrics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Arif Malik or Vasile B. Neculaes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Malik, M.A., Norton, D.G. et al. Shielded Sliding Discharge-Assisted Hydrocarbon Selective Catalytic Reduction of NOx over Ag/Al2O3 Catalysts Using Diesel as a Reductant. Plasma Chem Plasma Process 34, 825–836 (2014). https://doi.org/10.1007/s11090-014-9551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9551-3

Keywords

Navigation