Skip to main content
Log in

Investigation of the Expansion of an Oxygen Microwave Remote Plasma for the Growth of Functional Oxide Thin Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The expansion of an oxygen low-pressure microwave plasma was investigated in order to determine the optimal plasma parameters for the growth of functional oxide semiconductors. Langmuir probe measurements show that the electron density (n e ) increases with the injected power up to a saturation value of 3.0 × 109 cm−3 determined at 10 mTorr while electron temperature (T e ) remains constant at a value of 1.5 eV. When pressure is varied, n e shows a maximum value at a range from 12 to 20 mTorr while T e decreases monotonously with increasing pressure. In addition, both n e and T e decrease with the axial distance from the plasma source. These effects were discussed through the loss mechanisms in the remote plasma. For a pressure of 13 mTorr and at a substrate temperature of 500 °C, plasma enhanced oxidation of pure metallic Ti thin films lead to the formation of a pure TiO2 anatase phase compared to a mixed phase of TiO2 and TiO in the absence of plasma activation. For Mn thin films, the exposure to oxygen remote plasma led to the formation of MnO2 as opposed to obtaining Mn3O4 when oxidation is performed in the oxygen gas ambient. Remote plasma processing was thus found to provide selective pathways to control oxidation states, stoichiometry and phase composition of technologically attractive oxide thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faber H, Hirschmann J, Klaumünzer M, Braunschweig B, Peukert W, Halik M (2012) Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors. ACS Appl Mater Interfaces 4:1693–1696

    Article  CAS  Google Scholar 

  2. Iwasaki Y, Izumi A, Tsurumaki H, Namiki A, Oizumi H, Nishiyama I (2007) Oxidation and reduction of thin Ru films by gas plasma. Appl Surf Sci 253:8699–8704

    Article  CAS  Google Scholar 

  3. Gudmundsson JT (2004) Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules. J Phys D Appl Phys 37:2073–2081

    Article  CAS  Google Scholar 

  4. Normand F, Granier A, Leprince P, Marec J, Shi MK, Clouet F (1995) Polymer treatment in the flowing afterglow of an oxygen microwave discharge: active species profile concentrations and kinetics of the functionalization. Plasma Chem Plasma Process 15:173–198

    Article  CAS  Google Scholar 

  5. Canal C, Gaboriau F, Ricard A, Mozetic M, Cvelbar U, Drenik A (2007) Density of O-atoms in an afterglow reactor during treatment of wool. Plasma Chem Plasma Process 27:404–413

    Article  CAS  Google Scholar 

  6. Yang L, Ge D, Zhao J, Ding Y, Kong X, Li Y (2012) Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device. Sol Energy Mater Sol Cells 100:251–257

    Article  CAS  Google Scholar 

  7. Straumal BB, Protasova SG, Mazilkin AA, Schütz G, Goering E, Baretzky B, Straumal PB (2013) Ferromagnetism of zinc oxide nanograined films. JETP Lett 97:367–377

    Article  CAS  Google Scholar 

  8. Peng YH, Huang GF, Huang WQ (2012) Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv Powder Technol 23:8–12

    Article  CAS  Google Scholar 

  9. Lee W, Shin S, Jung DR, Kim J, Nahm C, Moon T, Park B (2012) Investigation of electronic and optical properties in Al–Ga co-doped ZnO thin films. Curr Appl Phys 12:628–631

    Article  Google Scholar 

  10. Xu S, Diao L (2008) Study of tungsten oxidation in O2/H2/N2 downstream plasma. J Vac Sci Technol A 26:360–364

    Article  CAS  Google Scholar 

  11. He G, Fang Q, Liu M, Zhu LQ, Zhang LD (2004) The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films. J Cryst Growth 268:155–162

    Article  CAS  Google Scholar 

  12. Busani T, Devine RAB (2009) Physical and optical properties of room temperature microwave plasma anodically grown TiO2. J Vac Sci Technol A 27:725–730

    Article  CAS  Google Scholar 

  13. Leng YX, Chen JY, Yang P, Sun H, Huang N (2003) Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation. Surf Coat Technol 166:176–182

    Article  CAS  Google Scholar 

  14. Jayasinghe RC, Perera AGU, Zhu H, Zhao Y (2012) Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors. Opt Lett 37:4302–4304

    Article  CAS  Google Scholar 

  15. Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater. doi:10.1155/2013/736375

    Google Scholar 

  16. Han X, Zhang F, Meng Q, Sun J (2010) Preparation and characterization of highly activated MnO2 nanostructure. J Am Ceram Soc 93:1183–1186

    Article  CAS  Google Scholar 

  17. Hannemann M, Hamann S, Burlacov I, Börner K, Spies HJ, Röpcke J (2013) Langmuir probe and optical diagnostics of active screen N2–H2 plasma nitriding processes with admixture of CH4. Surf Coat Technol 235:561–569

    Article  CAS  Google Scholar 

  18. Tabbal M, Kahwagy S, Christidis T, Nsouli B, Zahraman K (2006) Pulsed laser deposition of nanostructured dichromium trioxide thin films. Thin Solid Films 515:1976–1984

    Article  CAS  Google Scholar 

  19. Taylor KJ, Tynan GR (2005) Control of dissociation by varying oxygen pressure in noble gas admixtures for plasma processing. J Vac Sci Technol A 23:643–650

    Article  CAS  Google Scholar 

  20. Ferreira CM, Moisan M (1988) The similarity laws for the maintenance field and the absorbed power per electron in low-pressure surface wave produced plasmas and their extension to HF plasmas in general. Phys Scr 38:382–399

    Article  Google Scholar 

  21. O’Hanlon JF (2003) A user’s guide to vacuum technology, 3rd edn. Wiley, New York

    Book  Google Scholar 

  22. Stoffels E, Stoffels WW, Vender D, Kando M, Kroesen GMW, de Hoog FJ (1995) Negative ions in a radio-frequency oxygen plasma. Phys Rev E 51:2425–2435

    Article  CAS  Google Scholar 

  23. Chung TH, Kang HR, Bae MK (2012) Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O2/Ar–O2 plasmas. Phys Plasmas 19:1135021–1135029

    Article  Google Scholar 

  24. Kiss’ovski Z, Kolev S, Muller S, Paunska T, Shivarova A (2009) Expanding hydrogen plasmas: photodetachment-technique diagnostics. Plasma Phys Control Fusion 51:015007

    Article  Google Scholar 

  25. Lee C, Lieberman MA (1995) Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges. J Vac Sci Technol, A 13:360–380

    Google Scholar 

  26. Seo DC, Chung TH, Yoon HJ (2001) Electrostatic probe diagnostics of a planar-type radio-frequency inductively coupled oxygen plasma. J Appl Phys 89:4218–4223

    Article  CAS  Google Scholar 

  27. Chung TH, Yoon HJ, Seo DC (1999) Global model and scaling laws for inductively coupled oxygen discharge plasmas. J Appl Phys 86:3536

    Article  CAS  Google Scholar 

  28. Kiss’ovski Z, Kolev S, Shivarova A, Tsankov T (2007) Expanding plasma region of an inductively driven hydrogen discharge. IEEE Trans Plasma Sci 35:1149–1155

    Article  Google Scholar 

  29. Dimitrova M, Djermanova N, Kiss’ovski Z, Kolev S, Shivarova A, Tsankov T (2006) Probe diagnostics of expanding plasmas at low gas pressure. Plasma Process Polym 3:156–159

    Article  CAS  Google Scholar 

  30. Droulers G, Beaumont A, Beauvais J, Drouin D (2011) Spectroscopic ellipsometry on thin titanium oxide layers grown on titanium by plasma oxidation. J Vac Sci Technol B 29:021010

    Article  Google Scholar 

  31. Tinck S, Bogaerts A (2011) Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition. Plasma Sources Sci Technol 10:015008

    Article  Google Scholar 

  32. Gudmondson JT, Liebermann MA (1998) Model and measurements for a planar inductive oxygen discharge. Plasma Sources Sci Technol 7:1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Research Board (URB) of AUB and the Lebanese National Scientific Research Council (LNSRC). Central facilities were used within the Central Research Science Laboratory (CRSL) of AUB. The authors would like to thank Prof. Michel Moisan for valuable discussions and Mr. Youssef Gabriel for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tabbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Makdessi, G., Tabbal, M. Investigation of the Expansion of an Oxygen Microwave Remote Plasma for the Growth of Functional Oxide Thin Films. Plasma Chem Plasma Process 37, 243–255 (2017). https://doi.org/10.1007/s11090-016-9757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9757-7

Keywords

Navigation