Skip to main content
Log in

Graphitization of Carbon Particles in a Non-thermal Plasma Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The production of nanomaterials using non-thermal plasmas remains the focus of ongoing investigations due to advantageous properties of this class of processes, most notably the intense plasma-induced heating arising from energetic recombination events occurring at the surface of nanoparticles, which allows for the tailored synthesis of crystalline nanoparticles. In this work, the authors discuss an in situ, in-flight Fourier Transform Infrared absorption spectroscopy technique to investigate the temperature variation of carbon nanoparticles during their synthesis in an acetylene–argon–hydrogen non-thermal RF plasma. Based on the FTIR measurements, decreasing hydrogenation levels and the progressive onset of an incandescence signal were observed at increasing RF input power. In the high RF power region, the carbon particle temperature, derived by fitting the corresponding FTIR spectra with a modified Planck’s law, shows values above 2000 K. The corresponding ex situ characterization of the synthesized materials by Transmission Electron Microscopy and Raman Spectroscopy displays the production of highly graphitic particles and loss of bonded hydrogen from the material, hence supporting the substantial nanoparticle heating derived from the FTIR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goree J (1994) Charging of particles in a plasma. Plasma Sources Sci Technol 3(3):400–406

    Article  CAS  Google Scholar 

  2. Matsoukas T, Russell M (1995) Particle charging in low-pressure plasmas. J Appl Phys 77(9):4285–4292

    Article  CAS  Google Scholar 

  3. Schweigert VA, Schweigert IV (1996) Coagulation in a low-temperature plasma. J Phys D Appl Phys 29(3):655–659

    Article  CAS  Google Scholar 

  4. Carlile RN, Geha S, O’Hanlon JF, Stewart JC (1991) Electrostatic trapping of contamination particles in a process plasma environment. Appl Phys Lett 59(10):1167–1169

    Article  CAS  Google Scholar 

  5. Selwyn GS, Heidenreich JE, Haller KL (1990) Particle trapping phenomena in radio frequency plasmas. Appl Phys Lett 57(18):1876–1878

    Article  CAS  Google Scholar 

  6. Bapat A, Anderson C, Perrey CR, Carter CB, Campbell SA, Kortshagen U (2004) Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Phys Control Fus 46(12B):B97–B109

    Article  CAS  Google Scholar 

  7. Kramer NJ, Anthony RJ, Mamunuru M, Aydil ES, Kortshagen UR (2014) Plasma-induced crystallization of silicon nanoparticles. J Phys D Appl Phys 47(7):75202

    Article  CAS  Google Scholar 

  8. Mangolini L, Kortshagen U (2009) Selective nanoparticle heating: another form of nonequilibrium in dusty plasmas. Phys Rev E Stat Nonlinear Soft Matter Phys 79(2):1–8

    Article  CAS  Google Scholar 

  9. Lopez T, Mangolini L (2014) On the nucleation and crystallization of nanoparticles in continuous-flow nonthermal plasma reactors. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 32:61802

    Google Scholar 

  10. Alvarez Barragan A, Ilawe NV, Zhong L, Wong BM, Mangolini L (2017) A non-thermal plasma route to plasmonic TiN nanoparticles. J Phys Chem C 121(4):2316–2322

    Article  CAS  Google Scholar 

  11. Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5(4):655–659

    Article  CAS  PubMed  Google Scholar 

  12. Lange H, Saidane K, Razafinimanana M, Gleizes A (1999) Temperatures and C2 column densities in a carbon arc plasma. J Phys D Appl Phys 32(9):1024–1030

    Article  CAS  Google Scholar 

  13. Daugherty JE (1993) Particulate temperature in radio frequency glow discharges. J Vac Sci Technol A Vac Surf Film 11(4):1126

    Article  CAS  Google Scholar 

  14. Stoffels E, Stoffels WW, Kersten H, Swinkels G, Kroesen GMW (2001) Surface processes of dust particles in low pressure plasmas. Phys Scr 89:168–172

    Article  Google Scholar 

  15. Lopez T, Mangolini L (2014) Low activation energy for the crystallization of amorphous silicon nanoparticles. Nanoscale 6(3):1286–1294

    Article  CAS  PubMed  Google Scholar 

  16. Lopez T, Mangolini L (2016) In situ monitoring of hydrogen desorption from silicon nanoparticles dispersed in a nonthermal plasma. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 34(4):41206

    Google Scholar 

  17. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B Condens Matter Mater Phys 72(8):1–14

    Article  CAS  Google Scholar 

  18. Lee Y-J (2004) The second order Raman spectroscopy in carbon crystallinity. J Nucl Mater 325(2–3):174–179

    Article  CAS  Google Scholar 

  19. Tai FC, Lee SC, Chen J, Wei C, Chang SH (2009) Multipeak fitting analysis of Raman spectra on DLCH film. J Raman Spectrosc 40(8):1055–1059

    Article  CAS  Google Scholar 

  20. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  21. Nava G et al (2017) Towards an electronic grade nanoparticle-assembled silicon thin film by ballistic deposition at room temperature: the deposition method, and structural and electronic properties. J Mater Chem C 5(15):3725–3735

    Article  CAS  Google Scholar 

  22. Kovačević E, Stefanović I, Berndt J, Winter J (2003) Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas. J Appl Phys 93(5):2924–2930

    Article  CAS  Google Scholar 

  23. Tielens AGGM, Allamandola LJ, Sandford SA (1992) Infrared spectroscopy of dense clouds in the C–H stretch region: methanol and diamonds. Astrophys J 399:134–146

    Article  PubMed  Google Scholar 

  24. Stoffels WW, Stoffels E, Kroesen GMW, de Hoog FJ (1996) Detection of dust particles in the plasma by laser-induced heating. J Vac Sci Technol A Vac Surf Film 14(2):588

    Article  CAS  Google Scholar 

  25. Duley WW (1984) Refractive indices for amorphous carbon. Astrophys J 287:694–696

    Article  CAS  Google Scholar 

  26. Zubko EBVG, Mennella V, Colangeli L (1996) Optical constants of cosmic carbon analogue grains—I. Simulation of clustering by amodified continuous distribution of ellipsoids. Mon Not R Astron Soc 4(282):1321–1329

    Article  Google Scholar 

  27. Son S, Taheri M, Carpenter E, Harris VG, McHenry ME (2002) Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch. J Appl Phys 91(10 I):7589–7591

    Article  CAS  Google Scholar 

  28. Houska CR, Warren BE (1954) X-ray study of the graphitization of carbon black. J Appl Phys 25(12):1503–1509

    Article  CAS  Google Scholar 

  29. Onodera A, Irie Y, Higashi K, Umemura J, Takenaka T (1991) Graphitization of amorphous carbon at high pressures to 15 GPa. J Appl Phys 69(4):2611–2617

    Article  CAS  Google Scholar 

  30. Abrahamson JP (2017) Pulsed laser annealing of carbon. Carbon 124:6–8

    Article  CAS  Google Scholar 

  31. Barbera K et al (2014) Low-temperature graphitization of amorphous carbon nanospheres. Chin J Catal 35(6):869–876

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Early Career Research Program under Award No. DESC0014169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Mangolini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodard, A., Shojaei, K., Nava, G. et al. Graphitization of Carbon Particles in a Non-thermal Plasma Reactor. Plasma Chem Plasma Process 38, 683–694 (2018). https://doi.org/10.1007/s11090-018-9884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9884-4

Keywords

Navigation