Skip to main content

Advertisement

Log in

Transient Spark Discharge Generated in Various N2/O2 Gas Mixtures: Reactive Species in the Gas and Water and Their Antibacterial Effects

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2‾, NO3‾, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2‾ and nitrates NO3‾ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kovaľová Z, Leroy M, Jacobs C, Kirkpatrick M, Machala Z, Lopes F, Laux CO, DuBow M, Odic E (2015) Atmospheric pressure argon surface discharge propagated in long tubes: physical characterization and application to bio-decontamination. J Phys D Appl Phys 48:464003

    Google Scholar 

  2. Kovaľová Z, Leroy M, Kirkpatrick M, Odic E, Machala Z (2016) Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface. Bioelectrochemistry 112:91–99

    PubMed  Google Scholar 

  3. Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljević V, O’Donell CP, Bourke P, Keener KM, Cullen PJ (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35:5–17

    CAS  Google Scholar 

  4. Thirumdas R, Sarangapani C, Annapure US (2015) Cold plama: a novel non-thermal technology for food processing. Food Biophys 10:1–11

    Google Scholar 

  5. Misra NN, Schülter OK, Cullen PJ (2016) Cold plasma in food and agriculture. Academic Press, Elsevier, London

    Google Scholar 

  6. Zahoranová A, Henselová M, Hudecová D, Kaliňáková B, Kováčik D, Medvecká V, Černák M (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414

    Google Scholar 

  7. Puač N, Škoro N, Spasić K, Živković S, Milutinović M, Petrović ZL (2018) Activity of catalase enzyme in Paulownia tomentosa seeds during the process of germination after treatments with low pressure plasma and plasma activated water. Plasma Process Polym 15:1700082

    Google Scholar 

  8. Pawlat J, Starek A, Sujak A, Terebun P, Kwiatkowski M, Budzen M, Andrejko D (2018) Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seed’s germination. PLoS ONE 13:0194349

    Google Scholar 

  9. Arora V, Nikhil V, Suri NK, Arora P (2014) Cold atmospheric plasma (CAP) in dentistry. Dentistry 4:1000189

    Google Scholar 

  10. Gherardi M, Tonini R, Colombo V (2018) Plasma in dentistry: brief history and current status. Trends Biotechnol 36:583–585

    CAS  PubMed  Google Scholar 

  11. Bekeschus S, Schmidt A, Weltmann K-D, von Woedtke Th (2016) The plasma jet kINPen—a powerful tool for wound healing. Clin Plasma Med 4:19–28

    Google Scholar 

  12. Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke Th (2017) A cold plasma jet accelerated wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26:156–162

    CAS  PubMed  Google Scholar 

  13. Hasse S, Doung Tran T, Hahn O, Kindler S, Metelmann H-R, von Woedtke Th, Masur K (2016) Introduction of proliferation of basal epidermal keratinocytes by cold atmospheric pressure plasma. Clin Exp Dermatol 41:202–209

    CAS  PubMed  Google Scholar 

  14. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001

    Google Scholar 

  15. Babington P (2015) Use of cold atmospheric plasma in the treatment of cancer. Biointerphases 10:029403

    PubMed  Google Scholar 

  16. Van Boxem W, Van der Paal J, Gorbanev Y, Vanuytsel S, Smits E, Dewilde S, Bogaerts A (2017) Anti-cancer capacity of plasma treated PBS: effect of chemical composition on cancer cell cytotoxicity. Sci Rep 7:16478

    PubMed  PubMed Central  Google Scholar 

  17. Yan D, Sherman JH, Keidar M (2017) Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8:15977–15995

    PubMed  Google Scholar 

  18. Metelmann H-R, Seebauer Ch, Miller V, Fridman A, Bauer G, Graves DB, Pouvesle J-M, Rutkowski R, Schuster M, Bekeschus S, Wende K, Masur K, Hasse S, Gerling T, Hori M, Tanaka H, Choi EH, Weltman K-D, Metelmann PH, Von Hoff DD, von Woedtke Th (2018) Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin Plasma Med 9:6–13

    Google Scholar 

  19. Tornin J, Mateu-Sanz M, Rodríguez A, Labay C, Rodríguez R, Canal C (2019) Pyruvate plays a main role in the antitumoral selectivity of cold atmospheric plasma in osteosarcoma. Sci Rep 9:10681

    PubMed  PubMed Central  Google Scholar 

  20. Bauer G, Sersenová D, Graves DB, Machala Z (2019) Cold atmospheric plasma and plasma-activated medium trigger RONS-based tumor cell apoptosis. Sci Rep 9:14210

    PubMed  PubMed Central  Google Scholar 

  21. Lukeš P, Doležalová E, Sisrová I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:015019

    Google Scholar 

  22. Machala Z, Tarabová B, Sersenová D, Janda M, Hensel K (2019) Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D Appl Phys 52:032002

    Google Scholar 

  23. Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002

    Google Scholar 

  24. Kruszelnicki J, Lietz AM, Kushner MJ (2019) Atmospheric pressure plasma activation of water droplets. J Phys D Appl Phys 52:355207

    CAS  Google Scholar 

  25. Heirman P, Van Boxem W, Bogaerts A (2019) Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study. Phys Chem Chem Phys 21:12881–12894

    CAS  PubMed  Google Scholar 

  26. Lu P, Boehm D, Bourke P, Cullen PJ (2017) Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process Polym 14:1600207

    Google Scholar 

  27. Niquet R, Boehm D, Schnabel U, Cullen P, Bourke P, Ehlbeck J (2018) Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Process Polym 15:1700127

    Google Scholar 

  28. Khlyustova A, Labay C, Machala Z, Ginebra MP, Canal C (2019) Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review. Front Chem Sci Eng 13:238–252

    CAS  Google Scholar 

  29. Pawlat J, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K (2019) Evaluation of oxidative species in gaseous and liquid phase generated by mini-gliding arc discharge. Plasma Chem Plasma Process 39:627–643

    CAS  Google Scholar 

  30. Tresp H, Hammer MU, Winter J, Weltmann K-D, Reuter S (2013) Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J Phys D Appl Phys 46:435401

    Google Scholar 

  31. Jablonowski H, Hänsch MACh, Dünnbier M, Wende K, Hammer MU, Weltman K-D, Reuter S, von Woedtke Th (2015) Plasma jet’s shielding gas impact on bacterial inactivation. Biointerphases 10:029506

    PubMed  Google Scholar 

  32. von Woedtke Th, Metelmann H-R, Weltmann K-D (2014) Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Phys 54:104–117

    Google Scholar 

  33. Isbary G, Shimizu T, Zimmermann JL, Heinlin J, Al-Zaabi S, Rechfeld M, Morfill GE, Karrer S, Stolz W (2014) Randomized placebo-controlled clinical trial showed cold atmospheric argon plasma relieved acute pain and accelerated healing in herpes zoster. Clin Plasma Med 2:50–55

    Google Scholar 

  34. Girard F, Peret M, Dumont N, Badets V, Blanc S, Gazeli K, Noël C, Belmonde T, Marlin L, Cambus J-P, Simon G, Sojic N, Held B, Arbaut S, Clément F (2018) Correlation between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. Phys Chem Chem Phys 20:9198–9210

    CAS  PubMed  Google Scholar 

  35. Uchida G, Nakajima A, Ito T, Takenaka K, Kawasaki T, Koga K, Shiratani M, Setsuhara Y (2016) Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2‾ in liquid water. J Appl Phys 120:203302

    Google Scholar 

  36. Ito T, Uchida G, Nakajima A, Takenaka K, Setsuhara Y (2017) Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas. Jpn J Appl Phys 56:01AC06

    Google Scholar 

  37. Machala Z, Tarabová B, Hensel K, Špetlíková E, Šikurová L, Lukeš P (2013) Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects. Plasma Process Polym 10:649–659

    CAS  Google Scholar 

  38. Graves DB (2014) Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym 11:1120–1127

    CAS  Google Scholar 

  39. Girard F, Badets V, Blanc S, Gazeli K, Marlin L, Authier L, Svarnas P, Sojic N, Clement P, Arbault S (2016) Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. RSC Adv 6:78457–78467

    CAS  Google Scholar 

  40. Kono Y, Shibata H, Adachi K, Tanaka K (1994) Lactate-dependent killing of Escheriachia coli by nitrite plus hydrogen peroxide: a possible role of nitrogen dioxide. Arch Biochem Biophys 311:153–159

    CAS  PubMed  Google Scholar 

  41. Ke Z, Thopan P, Fridman G, Miller V, Yu L, Fridman A, Huang Q (2017) Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clin Plasma Med 7–8:1–8

    Google Scholar 

  42. Satoh K, Scott J, MacGregor J, Anderson JG (2007) Pulsed-plasma disinfection of water containing Escherichia coli. Jpn J Appl Phys 46:1137–1141

    CAS  Google Scholar 

  43. Oehmigen K, Hähnel M, Brandenburg R, Wilke Ch, Weltmann K-D, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7:250–257

    CAS  Google Scholar 

  44. Liu Z, Xu D, Liu D, Cui Q, Cai H, Li Q, Chen H, Kong MG (2017) Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogenous shielding gas for inducing myeloma cell apoptosis. J Phys D Appl Phys 50:195204

    Google Scholar 

  45. Hozák P, Scholtz V, Khun J, Mertová D, Vaňková E, Julák J (2018) Further contribution to the chemistry of plasma-activated water: influence on bacteria in planktonic and biofilm forms. Plasma Phys Rep 44:799–804

    Google Scholar 

  46. Julák J, Hujacová A, Scholtz V, Khun J, Holada K (2018) Contribution to the chemistry of plasma-activated water. Plasma Phys Rep 44:125–136

    Google Scholar 

  47. Qi Z, Tian E, Song Y, Sosnin EA, Skakun VS, Li T, Xia Y, Zhao Y, Lin XS, Liu D (2018) Inactivation of Shewanella putrefaciens by plasma activated water. Plasma Chem Plasma Process 38:1035–1050

    CAS  Google Scholar 

  48. Kondeti VSSK, Phan CQ, Wende K, Jablonowski H, Gangal U, Granick JL, Hunter RC, Bruggeman PJ (2018) Long/lived and short/lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radic Biol Med 124:275–287

    CAS  PubMed  Google Scholar 

  49. Anderson CE, Cha NR, Lindsay AD, Clark DS, Graves DB (2016) The role of interfacial reactions in determining plasma/liquid chemistry. Plasma Chem Plasma Process 36:1393–1415

    CAS  Google Scholar 

  50. Zhang Z, Xu Z, Cheng Ch, Wei J, Lan Y, Ni G, Sun Q, Qian S, Zhang H, Xia W, Shen J, Meng Y, Chu PK (2017) Bactericidal effects of plasma induced reactive species in dielectric barrier gas-liquid discharge. Plasma Chem Plasma Process 37:415–431

    CAS  Google Scholar 

  51. Hefny MM, Pattyn C, Lukeš P, Benedikt J (2016) Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions. J Phys D Appl Phys 49:404002

    Google Scholar 

  52. Benedikt J, Hefny MM, Shaw A, Buckley BR, Iza F, Schäkermann S, Bandow JE (2018) The fate of plasma-generated oxygen atoms in aqueous solutions: non-equilibrium atmospheric pressure plasmas as an efficient source of atomic O(aq). Phys Chem Chem Phys 20:12037

    CAS  PubMed  Google Scholar 

  53. Ikawa S, Tani S, Nakashima Y, Kitano K (2016) Physicochemical properties of bactericidal plasma-treated water. J Phys D Appl Phys 49:425401

    Google Scholar 

  54. Shaw P, Kumar N, Kwak HS, Park HJ, Uhm HS, Bogaerts A, Choi EH, Attri P (2018) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Reports 8:11268

    Google Scholar 

  55. Chen TP, Liang J, Su TL (2018) Plasma-activated water: antibacterial activity and artifacts? Environ Sci Pollut Restor 27:26699–26706

    Google Scholar 

  56. Eto H, Ono Y, Ogino A, Nagatsu M (2008) Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Appl Phys Lett 93:221502

    Google Scholar 

  57. van Bokhorst-van de Veen H, Xie H, Esveld E, Abee T, Mastwijk H, Groot MN (2015) Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evoked distinct changes in morphology and integrity of spores. Food Microbiol 45:26–33

    CAS  PubMed  Google Scholar 

  58. Abonti TR, Kaku M, Kojima S, Sumi H, Kojima S, Yamamoto T, Yashima Y, Miyahara H, Okino A, Kawata T, Tanne K, Tanimoto K (2016) Irradiation effects of low temperature multigas plasma jet on oral bacteria. Dent Mater J 35:822–828

    CAS  PubMed  Google Scholar 

  59. Machala Z, Janda M, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V, Morvová M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243:194–201

    CAS  Google Scholar 

  60. Janda M, Martišovitš V, Machala Z (2011) Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters. Plasma Sci Technol 20:035015

    Google Scholar 

  61. Janda M, Machala Z, Niklová A, Martišovitš V (2012) The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci Technol 21:045006

    Google Scholar 

  62. Janda M, Martišovitš V, Hensel K, Machala Z (2016) Generation of antimicrobial NOx by atmospheric air transient spark dsicharge. Plasma Chem Plasma Process 36:767–781

    CAS  Google Scholar 

  63. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem 15:327–328

    CAS  Google Scholar 

  64. Griess P (1879) Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen”. Ber Dtsch Chem Ges 12:426–428

    Google Scholar 

  65. Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54:785–803

    CAS  PubMed  Google Scholar 

  66. Tarabová B, Lukeš P, Janda M, Hensel K, Šikurová L, Machala Z (2018) Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process Polym 15:e1800030

    Google Scholar 

  67. Charbouillot T, Brigane M, Mailhot G, Maddigapu PR, Minero C, Vione D (2011) Performance and selectivity of the terephthalic acid probe for ·OH as function of temperature, pH and composition of atmospherically relevant aqueous media. J Photochem Photobiol A 222:70–76

    CAS  Google Scholar 

  68. Saran M, Summer KH (1999) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Rad Res 31:429–436

    CAS  Google Scholar 

  69. Kanazawa S, Furuki T, Nakaji T, Akamine S, Ichiki R (2013) Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge. J Phys Conf Ser 418:012102

    Google Scholar 

  70. Mark G, Tauber A, Laupert R, Schuchmann H-P, Schultz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution-Part II: terephthalate and Fricke dosimetry and the influence of various constrictions on the sonolytic yield. Ultrasound Chem 5:41–42

    CAS  Google Scholar 

  71. Miller JA, Bowman CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338

    CAS  Google Scholar 

  72. Kossyi IA, Kostinsky AYu, Matveyev AA, Silakov VP (1992) Kinetic scheme of non-equilibrium discharge in N2-O2 mixtures. Plasma Source Sci Technol 1:207–220

    CAS  Google Scholar 

  73. Lowke JJ, Morrow R (1995) Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators. IEEE Trans Plasma Sci 23:661–671

    CAS  Google Scholar 

  74. Fan X, Kang S, Li J, Zhu T (2018) Formation of nitrogen oxides (N2O, NO, and NO2) in typical plasma and plasma-catalytic processes for air pollution control. Water Air Soil Pollut 229:351

    Google Scholar 

  75. Krawczyk K, Mlotek M (2001) Combined plasma-catalytic processing of nitrous oxide. Appl Catal B 30:233–245

    CAS  Google Scholar 

  76. Morgan MM, Cuddly MF, Fisher ER (2010) Gas-phase chemistry in inductively coupled plasmas for NO removal from mixed gas systems. J Phys Chem 114:1722–1733

    CAS  Google Scholar 

  77. Dahiya RP, Mishra SK, Veefkind A (1993) Plasma chemical investigation for NOx and SO2 removal from flue gases. IEEE Trans Plasma Sci 21:346–348

    Google Scholar 

  78. Smith IWM, Tuckett RP, Whitham CJ (1993) Vibrational state specificity and selectivity in the reactions N + OH → NO(v) + H and N + NO(v) → N2 + O. J Chem Phys 98:6267–6275

    CAS  Google Scholar 

  79. Lukeš P, Locke BR, Brisset JL (2012) In: Parvulescu VI, Magureanu M, Lukeš P (eds) Elementary chemical and physical phenomena in electrical discharge plasma in gas-liquid environments and in liquids. Plasma chemistry and catalysis in gases and liquids, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  80. Sridharan UC, Reimann B, Kaufman F (1980) Kinetics of the reaction OH + H2O2 → HO2 + H2O. J Chem Phys 73:1286–1293

    CAS  Google Scholar 

  81. Christensen H, Sehested K, Corfitzen H (1982) Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperature. J Phys Chem 86:1588–1590

    CAS  Google Scholar 

  82. Anderson G, Kaufman F (1973) Kinetics of the reaction OH (v = 0) + O3 → HO2 + O2. Chem Phys Lett 19:483

    CAS  Google Scholar 

  83. Kuhl AL, Leyer J-C, Sirignano WA, Borisov AA (1993) Dynamics of gaseous combustion. Aerospace Research Central, AIAA, Reston

    Google Scholar 

  84. Kovačević VV, Dojcinovic BP, Jovic M, Roglic GM, Obradovic BM, Kuraica MM (2017) Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J Phys D Appl Phys 50:155205

    Google Scholar 

  85. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981

    CAS  Google Scholar 

  86. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  87. Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456

    CAS  Google Scholar 

  88. Sasakura T, Uemura S, Hino M, Kiyomatsu S, Takatsuji Y, Yamasaki R, Morimoto M, Haruyama T (2018) Excitation of H2O at the plasma/water interface by UV irradiation for the elevation of ammonia production. Green Chem 20:627–633

    Google Scholar 

  89. Haruyama T, Namise T, Shimoshimizu N, Uemura S, Takatsuji Y, Hino M, Yamasaki R, Kamachi T, Kohno M (2016) Non-catalyzed one-step synthesis of ammonia from atmospheric air and water. Green Chem 18:4536–4541

    CAS  Google Scholar 

  90. Wójtowicz MA, Miknis FP, Grimes RW, Smith WW, Serio MA (2000) Control of nitric oxide, nitrous oxide, ad ammonia emission using microwave plasmas. J Hazard Mater 74:81–89

    PubMed  Google Scholar 

  91. Gorbanev Y, O’Connell D, Chechik V (2016) Non-thermal plasma in contact with water: the origin of species. Chem Eur J 22:1–11

    Google Scholar 

  92. Gorbanev Y, Verlackt CCW, Tinck S, Tuenter E, Foubert K, Cos P, Bogaerts A (2018) Combining experimental and modeling approach to study the sources of reactive species induced in water by the COST RF plasma jet. Phys Chem Chem Phys 20:2797–2808

    CAS  PubMed  Google Scholar 

  93. Lukeš P, Locke BR, Brisset J-L (2012) In: Parvulescu VI, Magureanu M, Lukeš P (eds) Aquaeous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. Plasma chemistry and catalysis in gases and liquids, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  94. He B, Ma Y, Gong X, Long Z, Li J, Xiong Q, Liu H, Chen Q, Zhang X, Yang S, Liu QH (2017) Simultaneous quantification of aqueous peroxide, nitrate, and nitrite during the plasma-liquid interactions by derivate absorption spectrophotometry. J Phys D Appl Phys 50:445207

    Google Scholar 

  95. Brisset J-L, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non/thermal discharges burning in air over aqueous solutions. Plasma Chem Plasma Process 32:655–674

    CAS  Google Scholar 

  96. Gupta D, Haris B, Kissner R, Koppenol WH (2009) Peroxynitrates is formed rapidly during decomposition of peroxynitrite at neutral pH. Dalton Trans 29:5730–5736

    Google Scholar 

  97. Li Y, Sella C, Lemaitre F, Guille-Collignon M, Thouin L (2014) Electrochemical detection of nitric oxide and peroxynitrite anion in microchannels at highly sensitive platinum-black coated electrodes. application to ROS and RNS mixtures prior to biological investigations. Electrochim Acta 144:111–118

    CAS  Google Scholar 

  98. Winter J, Tresp H, Hammer MU, Iseni S, Kupsch S, Schmidt-Bleker A, Wende K, Dünnbier M, Masur K, Weltmann K-D, Reuter S (2014) Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. J Phys D Appl Phys 47:285401

    Google Scholar 

  99. Kurake N, Tanaka H, Ishikawa K, Takeda K, Hashizume H, Nakamura K, Kajiyama H, Kondo T, Kikkawa F, Mizuno M, Hori M (2017) Effects of ·OH and ·NO radicals in the aqueous phase on H2O2 and NO2‾ generated in plasma-activated medium. J Phys D Appl Phys 50:155202

    Google Scholar 

  100. Jablonowski H, Bussiahn R, Hammer MU, Weltmann K-D, von Woedtke Th, Reuter S (2015) Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Phys Plasmas 22:122008

    Google Scholar 

  101. Honnorat B, Duchesne C, Liu B, Rousseau A (2018) The scavenging of hydroxyl radical by terephthalic acid and methanol provide insight of ·OH concentration in liquid phase during plasma-liquid interactions. In: 7th international conference on plasma medicine, Philadelphia, PA, June 17–22, Book of Abstracts, p 230

  102. Hensel K, Kučerová K, Tarabová B, Janda M, Machala Z, Sano K, Mihai CT, Gorgan LD, Jijie R, Pohoata V, Topala I (2015) Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells and biomolecules. Biointerphases 10:029515

    PubMed  Google Scholar 

  103. Pavlovich MJ, Chang H-W, Sakiyama Y, Clark DS, Graves DB (2013) Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J Phys D Appl Phys 46:145202

    Google Scholar 

Download references

Acknowledgements

This work was supported by Slovak Research and Development Agency APVV-17-0382 and SK-PL-18-0900, and by Scientific Grant Agency VEGA V-18-050-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenko Machala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kučerová, K., Machala, Z. & Hensel, K. Transient Spark Discharge Generated in Various N2/O2 Gas Mixtures: Reactive Species in the Gas and Water and Their Antibacterial Effects. Plasma Chem Plasma Process 40, 749–773 (2020). https://doi.org/10.1007/s11090-020-10082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10082-2

Keywords

Navigation