Skip to main content
Log in

Ionization and Electronic State Excitation of CO2 in Radio-frequency Electric Field

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The rate coefficients for the electron impact ionization and electronic state excitation of the CO2 molecule are calculated in non-equilibrium conditions in the presence of time-dependent electric field. A Monte Carlo simulation has been employed in order to determine non-equilibrium electron energy distribution functions in the CO2 gas, within one period of time-dependent radio-frequency (RF) electric field. By using the distribution functions, ionization rate coefficients for the CO2 molecule have been obtained within one period in RF frequency range at effective reduced electric field up to 500 Td. All obtained rate coefficients have been period averaged, as they can be of use in practical applications in the modeling of RF discharges in CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Löhle S, Lein S, Eichhorn Ch, Herdrich G, Winter M (2009) J Tec Phys 50:151–164

    Google Scholar 

  2. Vesel A, Mozetic M, Drenik A, Balat-Pichelin M (2011) Chem Phys 382:127–131

    CAS  Google Scholar 

  3. Annaloro J, Bultel A (2019) Phys Plasmas 26:103505

    Google Scholar 

  4. Olawumi TT, Levrau E, Krishtab M, Detavernier C, Bartha JW, Xu K, Lazzarino F, Baklanov MR (2015) ECS J Solid State Sci Techol 4:N3048–N3057

    CAS  Google Scholar 

  5. Imamura T, Yamamoto K (2017) J Vac Sci Technol B 35:062201

    Google Scholar 

  6. Ohishi K, Miyakawa N, Yamaguchi S, Fujioka T (2005) Rev Laser Eng 33:52–56

    CAS  Google Scholar 

  7. Heeman-Ilieva MB, Udalov YuB, Witteman WJ, Peters PJM, Hoen K, Ochkin VN (1993) J Appl Phys 74:4786

    Google Scholar 

  8. Chan KH, Jew JM, Fried D (2016) Proc SPIE Int Soc Opt Eng 9692:969206

    PubMed  PubMed Central  Google Scholar 

  9. Halachmi S, Orenstein A, Meneghel T, Lapidoth M (2010) J Cosmet Laser Ther 12:208–212

    PubMed  PubMed Central  Google Scholar 

  10. Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B (2010) Plasma Sources Sci Technol 19:034015

    Google Scholar 

  11. Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Appl Catal B Environ 182:525–532

    CAS  Google Scholar 

  12. Yu Q, Kong M, Liu T, Fei J, Zheng X (2012) Plasma Chem Plasma Process 32:153–163

    CAS  Google Scholar 

  13. Mahammadunnisa S, Reddy EL, Ray D, Subrahmanyam C, Whitehead JC (2013) Int J Greenh Gas Con 16:361–363

    CAS  Google Scholar 

  14. Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998) J Catal 180:225–233

    CAS  Google Scholar 

  15. Wu D, Outlaw RA, Ash RL (1996) J Vac Sci Technol A 14:408–414

    CAS  Google Scholar 

  16. Wang J-Y, Xia G-G, Huang A, Suib SL, Hayashi Y, Matsumoto H (1999) J Catal 185:152–159

    CAS  Google Scholar 

  17. Mikoviny T, Kocan M, Matejcik S, Mason NJ, Skalny JD (2004) J Phys D Appl Phys 37:64–73

    CAS  Google Scholar 

  18. Horváth G, Skalný JD, Mason NJ (2008) J Phys D: Appl Phys 41:225207

    Google Scholar 

  19. Indarto A, Yang DR, Choi J-W, Lee H, Song HK (2007) J Hazard Mater 146:309–315

    CAS  PubMed  Google Scholar 

  20. Nunnally T, Gutsol K, Rabinovich A, Fridman A, Gutsol A, Kemoun A (2011) J Phys D Appl Phys 44:274009

    Google Scholar 

  21. Huang Q, Zhang D, Wang D, Liu K, Kleyn AW (2017) J Phys D Appl Phys 50:294001

    Google Scholar 

  22. Chen G, Silva T, Georgieva V, Godfroid T, Britun N, Snyders R, Delplancke-Ogletree MP (2015) Int J Hydrog Energy 40:3789–3796

    CAS  Google Scholar 

  23. Silva T, Britun N, Godfroid T, Snyders R (2014) Plasma Sources Sci Technol 23:025009

    Google Scholar 

  24. Spencer LF, Gallimore AD (2011) Plasma Chem Plasma Process 31:79–89

    CAS  Google Scholar 

  25. Savinov SY, Lee H, Song HK, Na BK (1999) Ind Eng Chem Res 38:2540–2547

    CAS  Google Scholar 

  26. Hsieh L, Lee W, Li C, Chen C, Wang Y, Chang M (1998) J Chem Technol Biotechnol 73:432–442

    CAS  Google Scholar 

  27. Fridman A (2008) Plasma Chemistry, 2nd edn. England, Cambridge

    Google Scholar 

  28. Vojnović MM, Ristić MM, Stanković VV, Poparić GB (2019) Phys Rev E 99:063211

    PubMed  Google Scholar 

  29. Poparić GB, Ristić MM, Belić DS (2010) J Phys Chem A 114:1610–1615

    PubMed  Google Scholar 

  30. Capitelli M, Gorse C, Winkler R, Wilhelm J (1988) Plasma Chem Plasma Process 8:399–424

    CAS  Google Scholar 

  31. Grofulović M, Alves LL, Guerra V (2016) J Phys D Appl Phys 49:395207

    Google Scholar 

  32. Popović MP, Vojnović MM, Aoneas MM, Ristić MM, Vićić MD, Poparić GB (2014) Phys Plasmas 21:063504

    Google Scholar 

  33. Aoneas MM, Vojnović MM, Ristić MM, Vićić MD, Poparić GB (2017) Phys Plasmas 24:023502

    Google Scholar 

  34. Ristić MM, Aoneas MM, Vojnović MM, Poparić GB (2017) Plasma Chem Plasma Process 37:1431–1443

    Google Scholar 

  35. Ristić MM, Aoneas MM, Vojnović MM, Galijaš S, Poparić GB (2018) Plasma Chem Plasma Process 38:903–916

    Google Scholar 

  36. Winkler R, Wilhelm J, Capitelli M, Gorse C (1992) Plasma Chem Plasma Process 12:71–87

    CAS  Google Scholar 

  37. Morrow R (1981) J Comput Phys 43:1–15

    Google Scholar 

  38. Maeda K, Makabe T, Nakano N, Bzenić S, Petrović ZL (1997) Phys Rev E 55:5901

    CAS  Google Scholar 

  39. Lucas J, Saelee HT (1975) J Phys D: Appl Phys 8:640

    CAS  Google Scholar 

  40. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733

    CAS  Google Scholar 

  41. Kochem K-H, Sohn W, Hebel N, Jung K, Ehrhardt H (1985) J Phys B At Mol Opt Phys 18:4455–4467

    CAS  Google Scholar 

  42. Tanaka H, Ishikawa T, Masai T, Sagara T, Boesten L, Takekawa M, Itikawa Y, Kimura M (1998) Phys Rev A 57:1798–1808

    CAS  Google Scholar 

  43. Kanik I, McCollum DC, Nickel JC (1989) J Phys B At Mol Opt Phys 22:1225–1230

    CAS  Google Scholar 

  44. Kitajima M, Watanabe S, Tanaka H, Takekawa M, Kimura M, Itikawa Y (2001) J Phys B At Mol Opt Phys 34:1929–1940

    CAS  Google Scholar 

  45. Campbell L, Brunger MJ, Rescigno TN (2008) J Geophys Res 113:E08008

    Google Scholar 

  46. Allan M (2002) J Phys B At Mol Opt Phys 35:L387–L395

    CAS  Google Scholar 

  47. McCurdy CW, Isaacs WA, Meyer H-D, Rescigno TN (2003) Phys Rev A 67:042708

    Google Scholar 

  48. Laporta V, Tennyson J, Celiberto R (2016) Plasma Sources Sci Technol 25:06LT02

    Google Scholar 

  49. Johnstone WM, Akther P, Newell WR (1995) J Phys B At Mol Opt Phys 28:743–753

    CAS  Google Scholar 

  50. Nakamura Y (1995) Aust J Phys 48:357–363

    CAS  Google Scholar 

  51. Itikawa Y (2002) J Phys Chem Ref Data 31:749–767

    CAS  Google Scholar 

  52. Lindsay BG, Mangan MA (2003) In: Itikawa Y (ed) Photon and electron interactions with atoms, molecules and ions, vol 17C. Springer, Berlin

    Google Scholar 

  53. Straub HC, Lindsay BG, Smith KA, Stebbings RF (1996) J Chem Phys 105:4015

    CAS  Google Scholar 

  54. Kawahara H, Kato H, Hoshino M, Tanaka H, Campbell L, Brunger MJ (2008) J Phys B At Mol Opt Phys 41:085203

    Google Scholar 

  55. Green MA, Teubner PJO, Campbell L, Brunger MJ, Hoshino M, Ishikawa T, Kitajima M, Tanaka H, Itikawa Y, Kimura M, Buenker RJ (2002) J Phys B At Mol Opt Phys 35:567–587

    CAS  Google Scholar 

  56. Klump KN, Lassettre EN (1978) J Electron Spectrosc Relat Phenom 14:215–230

    CAS  Google Scholar 

  57. Polak LS, Slovetsky DI (1976) Int J Radiat Phys Chem 8:257–282

    CAS  Google Scholar 

  58. Hake RD, Jr Phelps AV (1967) Phys Rev 158:70–84

    CAS  Google Scholar 

  59. Hasegawa H, Date H, Shimozuma M, Yoshida K, Tagashira H (1996) J Phys D Appl Phys 29:2664–2667

    CAS  Google Scholar 

  60. Roznerski W, Leja K (1984) J Phys D Appl Phys 17:279–285

    CAS  Google Scholar 

  61. Hernández-Ávila JL, Basurto E, de Urquijo J (2002) J Phys D Appl Phys 35:2264–2269

    Google Scholar 

  62. Vass M, Korolov I, Loffhagen D, Pinhão N, Donkó Z (2017) Plasma Sources Sci Technol 26:065007

    Google Scholar 

  63. Saelee HT, Lucas J, Limbeek JW (1977) IEE J Solid-State Electron Devices 1:111–116

    Google Scholar 

  64. Belić DS (1989) Chem Phys 130:141–144

    Google Scholar 

  65. Loureiro J (1993) Phys Rev E 47:1262–1275

    CAS  Google Scholar 

  66. Pietanza LD, Colonna G, Capitelli M (2020) Phys Plasmas 27:023513

    CAS  Google Scholar 

  67. Fox GW, Duffendack OS, Barker EF (1927) Proc Natl Acad Sci USA 13:302–307

    CAS  PubMed  Google Scholar 

  68. Ajello JM (1971) J Chem Phys 55:3169–3177

    CAS  Google Scholar 

  69. Liu W, Victor GA (1994) Astrophys J 435:909–919

    CAS  Google Scholar 

  70. Krauss M, Mielczarek SR, Neumann D, Kuyatt CE (1971) J Geophys Res 76:3733–3737

    CAS  Google Scholar 

  71. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668–675

    CAS  Google Scholar 

  72. Khan MI, Rehman NU, Khan S, Ullah N, Masood A, Ullah A (2019) AIP Adv 9:085015

    Google Scholar 

  73. Kanik I, Ajello JM, James GK (1993) Chem Phys Lett 211:523–528

    CAS  Google Scholar 

  74. Bhardwaj A, Jain SK (2009) J Geophys Res 114:A11309

    Google Scholar 

Download references

Acknowledgements

The financial support by Ministry of Education, Science and Technological Development of Republic of Serbia Contract number: 451-03-68/2020-14/200146

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav M. Ristić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanković, V.V., Ristić, M.M., Vojnović, M.M. et al. Ionization and Electronic State Excitation of CO2 in Radio-frequency Electric Field. Plasma Chem Plasma Process 40, 1621–1637 (2020). https://doi.org/10.1007/s11090-020-10106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10106-x

Keywords

Navigation