Skip to main content
Log in

Exploitation of Pare Topoisomerase IV as Drug Target for the Treatment of Multidrug-Resistant Bacteria: A Review

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The antibacterial resistance (ABR) is a growing phenomenon and global threat to mankind. To circumvent the ABR, many approaches have been put forth, but none of them meet the pre-requisites associated with the resistance mechanisms. In this review, we focused on the importance of unexploited enzyme, ParE, a topoisomerase responsible for the bacterial survival. The bacterial topoisomerases maintain the topological state of DNA. The gyrases and topoisomerases IV are validated targets for the antibacterial activity. Both these enzymes are structurally similar and possess high degree conservation in the catalytic domain of the N-terminal region, which make them appealing targets for broad spectrum antibacterial activity. Despite being an attractive target for the development of new antibacterials, there are currently no antibiotics targeting gyrases and topoisomerase (topo) IV in the market. Availability of the high-resolution crystal structure data for ParE made it possible to design new classes of antibacterials. Here, we discuss the importance of targeting topo IV enzyme as it is less prone to bacterial resistance which has been disclosed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Walsh and G. Wright, ACS Publ., 105 (2), 391 – 394 (2005).

    CAS  Google Scholar 

  2. A. Maxwell and D. M. Lawson, Curr. Topics Med. Chem., 3(3), 283 – 303 (2003).

    Article  CAS  Google Scholar 

  3. K Drlica and X Zhao, Microbiol. Mol. Biol. Rev., 61(3), 377 – 392 (1997).

    Article  CAS  Google Scholar 

  4. P. Heisig, Planta Med., 67(01), 3 – 12 (2001).

    Article  CAS  Google Scholar 

  5. H. Peng and K. J. Marians, J. Biol. Chem., 270(42), 25286 – 25290 (1995).

    Article  CAS  Google Scholar 

  6. A. B. Khodursky, E. L. Zechiedrich, and N. R. Cozzarelli, Proc. Natl. Acad. Sci. U. S. A., 92, 11801 – 11805 (1995).

    Article  CAS  Google Scholar 

  7. M. Takei, H. Fukuda, R. Kishii, et al., Antimicrob. Agents Chemother., 45(12), 3544 – 3547 (2001).

    Article  CAS  Google Scholar 

  8. L. Brino, A. Urzhumtsev, M. Mousli, et al., J. Biol. Chem., 275(13), 9468 – 9475 (2000).

    Article  CAS  Google Scholar 

  9. L. Brino, C. Bronner, P. Oudet, et al., Biochimie, 81(10), 973 – 980 (1999).

    Article  CAS  Google Scholar 

  10. M. Stieger, P. Angehrn, B. Wohlgensinger, et al., Antimicrob. Agents Chemother., 40(4), 1060 – 1062 (1996).

    Article  CAS  Google Scholar 

  11. M. Cullen, A. Wyke, R. Kuroda, et al., Antimicrob. Agents Chemother., 33(6), 886 – 894 (1989).

    Article  CAS  Google Scholar 

  12. S. Sreedharan, M. Oram, B. Jensen, et al., J. Bacteriol., 172(12), 7260 – 7262 (1990).

    Article  CAS  Google Scholar 

  13. R. Hopewell, M. Oram, R. Briesewitz, et al., J. Bacteriol., 172(6), 3481 – 3484 (1990).

    Article  CAS  Google Scholar 

  14. R. Changkwanyeun, T. Yamaguchi, S. Kongsoi, et al., Drug Test. Anal., 8(10), 1071 – 1076.

  15. D. C. Stein, R. J. Danaher, and T. M. Cook, Antimicrob. Agents Chemother., 35(4), 622 – 626 (1991).

    Article  CAS  Google Scholar 

  16. P. Sparling, F. Sarubbi, and E. Blackman, J. Bacteriol., 124(2), 740 – 749 (1975).

    Article  CAS  Google Scholar 

  17. J.-I. Yamagishi, K. Yoshida, M, Yamayoshi, and S. Nakamura, Mol. Gen. Genet., 204, 367 – 373 (1986).

  18. Z. Liao, L. Thibaut, A. Jobson, et al., Mol. Pharmacol., 70(1), 366 – 732 (2006).

    Article  CAS  Google Scholar 

  19. M. A. Azam, J. Thathan, and N. S. Tripuraneni, Struct. Chem., 28(4), 1187 – 200 (2017).

    Article  CAS  Google Scholar 

  20. F. Sifaoui, V. Lamour, E. Varon, et al., J. Bacteriol., 185(20), 6137 – 6146 (2003).

    Article  CAS  Google Scholar 

  21. C. Janoir, V. Zeller, M-D. Kitzis, et al., Antimicrob. Agents Chemother., 40(12), 2760 – 2764 (1996).

    Article  CAS  Google Scholar 

  22. A. B. Khodursky and N. R. Cozzarelli, J. Biol. Chem., 273(42), 27668 – 27677 (1998).

    Article  CAS  Google Scholar 

  23. S. Bellon, J. D. Parsons, Y. Wei, et al., Antimicrob. Agents Chemother., 48(5), 1856 – 1864 (2004).

    Article  CAS  Google Scholar 

  24. Y. Onodera, J. Okuda, M. Tanaka, et al., Antimicrob. Agents Chemother., 46(6), 1800 – 1804 (2002).

    Article  CAS  Google Scholar 

  25. P. Angehrn, E. Goetschi, H. Gmuender, et al., J. Med. Chem., 54(7), 2207 – 2224 (2011).

    Article  CAS  Google Scholar 

  26. A.-L. Grillot, A. L. Tiran, D. Shannon, et al., J. Med. Chem., 57(21), 8792 – 8816 (2014).

    Article  CAS  Google Scholar 

  27. J. T. Starr, R. J. Sciotti, D. L. Hanna, et al., Bioorg. Med. Chem. Lett., 19(18), 5302 – 5306 (2009).

    Article  CAS  Google Scholar 

  28. PS Charifson, A-L Grillot, TH Grossman, et al., J. Med. Chem., 51(17), 5243 – 5263 (2008).

    Article  CAS  Google Scholar 

  29. G. S. Basarab, J. I. Manchester, S. Bist, et al., J. Med. Chem., 56(21), 8712 – 8735 (2013).

    Article  CAS  Google Scholar 

  30. S. P. East, C. B. White, O. Barker, et al., Bioorg. Med. Chem. Lett., 19(3), 894 – 899 (2009).

    Article  CAS  Google Scholar 

  31. L. C. Axford, P. K. Agarwal, K. H. Anderson, et al., Bioorg. Med. Chem. Lett., 23(24), 6598 – 6603 (2013).

    Article  CAS  Google Scholar 

  32. J. T. Palmer, L. C. Axford, S. Barker, et al., Bioorg. Med. Chem. Lett., 24(17), 4215 – 4222 (2014).

    Article  CAS  Google Scholar 

  33. X. Huang, J. Guo, Q. Liu, et al., Med. Chem. Commun., 9(10), 1619 – 1629 (2018).

    Article  CAS  Google Scholar 

  34. B. A. Sherer, K. Hull, O. Green, et al., Bioorg. Med. Chem. Lett., 21(24), 7416 – 7420 (2011).

    Article  CAS  Google Scholar 

  35. A. Kumar, I. A. Khan, S. Koul, et al., J. Antimicrob. Chemother., 61(6), 1270 – 1276 (2008).

    Article  CAS  Google Scholar 

  36. I. A. Yule, L. G. Czaplewski, S. Pommier, et al., Eur. J. Med. Chem., 86, 31 – 38 (2014).

    Article  CAS  Google Scholar 

  37. Y. Li, Y. L. Wong, M. Y. Lee, et al., Biomol. NMR Assign., 10(1), 135 – 138 (2016).

    Article  CAS  Google Scholar 

  38. Tricyclic Gyrase Inhibitors, US Patent 9732083, August 15 (2017).

Download references

Acknowledgements

The authors much acknowledge the All India Council of Technical Education, National Doctoral Fellowship (NDF) Grant-56149 for providing the funding support.

Conflict of Interest

The authors declare that they have no conflict of interest in this study. The authors alone are responsible for the content and writing of the paper.

Ethical Statement

The present study involved neither animals nor human volunteers. Thus, no ethical approval was required.

Author information

Authors and Affiliations

Authors

Contributions

Vidyasrilekha Yele was the author and synthesized the literature, involved in drafting the paper; Dr. Afzal Azam Md provided conceptual inputs and critical revision of the manuscript. All authors read and approved the final document.

Corresponding author

Correspondence to Afzal Azam Md.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yele, V., Md, A.A. Exploitation of Pare Topoisomerase IV as Drug Target for the Treatment of Multidrug-Resistant Bacteria: A Review. Pharm Chem J 54, 462–468 (2020). https://doi.org/10.1007/s11094-020-02223-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02223-w

Keywords

Navigation