Skip to main content

Advertisement

Log in

Glycyl-l-Glutamine Disposition in Rat Choroid Plexus Epithelial Cells in Primary Culture: Role of PEPT2

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The purpose of this research was to determine the polarity and directionality of the PEPT2-mediated uptake and transepithelial transport of the neuropeptide glycyl-l-glutamine (GlyGln) in choroid plexus.

Methods

The transport kinetics of [3H]GlyGln was studied in neonatal rat choroid plexus epithelial cells in primary culture grown on laminin-coated Transwell filter inserts. Using a bicarbonate artificial cerebrospinal fluid (CSF) buffer (pH 7.4) at 37°C, GlyGln studies were performed as a function of time, substrate concentration, and the presence of potential inhibitors (at 1 mM).

Results

GlyGln (2 μM) accumulation was about three to four times greater when introduced from the apical (CSF-facing) as opposed to the basal (blood-facing) side of the cell monolayer, and transepithelial transport was about two times greater in the apical-to-basal direction. The apical uptake of radiolabeled GlyGln (2 μM) was inhibited significantly by dipeptides (i.e., unlabeled GlyGln and cysteinylglycine) and some neuropeptides (i.e., carnosine, N-acetylaspartylglutamate, kyotorphin), but was unaffected by amino acids (i.e., glycine, glutamine) as well as by [d-Arg2]-kyotorphin and glutathione. The concentration-dependent apical uptake of GlyGln (2–1000 μM) was characterized by a high-affinity process (i.e., Vmax of 72 pmol/mg/min; Km of 136 μM), consistent with the properties of PEPT2. The intracellular hydrolysis of GlyGln was extensive, however, with only 40% of the dipeptide remaining intact after 1 h.

Conclusions

The results demonstrate that PEPT2 plays an important role in regulating the apical uptake of GlyGln at the blood–CSF interface. Once inside the cell, GlyGln is rapidly degraded to its constitutive amino acids for further processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCSFB:

blood–CSF barrier

CSF:

cerebrospinal fluid

CysGly:

cysteinylglycine

DKTP:

[d-Arg2]kyotorphin

GlyGln:

glycyl-l-glutamine

GlySar:

glycylsarcosine

GSH:

glutathione

HPLC:

high-performance liquid chromatography

KTP:

kyotorphin

NAAG:

N-acetylaspartylglutamate

PEPT:

peptide transporter

PHT:

peptide/histidine transporter

References

  1. C. B. Unal M. D. Owen W. R. Millington (1997) ArticleTitleCyclo(Gly-Gln) inhibits the cardiorespiratory depression produced by β-endorphin and morphine Brain Res. 747 52–59 Occurrence Handle10.1016/S0006-8993(96)01261-9 Occurrence Handle9042527

    Article  PubMed  Google Scholar 

  2. M. D. Owen C. B. Unal M. F. Callahan K. Trivedi C. York W. R. Millington (2000) ArticleTitleGlycyl-glutamine inhibits the respiratory depression, but not the antinociception, produced by morphine Am. J. Physiol. 279 R1944–R1948

    Google Scholar 

  3. J. A. Vazquez M. Raghunath S. A. Adibi (1992) ArticleTitleUptake and hydrolysis of glycylglutamine at the blood-brain barrier Metabolism 41 121–124 Occurrence Handle10.1016/0026-0495(92)90137-Y

    Article  Google Scholar 

  4. D. C. Parish D. G. Smyth J. R. Normanton J. H. Wolstencroft (1983) ArticleTitleGlycyl glutamine, an inhibitory neuropeptide derived from β-endorphin Nature 306 267–270 Occurrence Handle10.1038/306267a0 Occurrence Handle6316148

    Article  PubMed  Google Scholar 

  5. D. E. Smith C. E. Johanson R. F. Keep (2004) ArticleTitlePeptide and peptide analog transport systems at the blood-CSF barrier Adv. Drug Deliv. Rev. 56 1765–1791 Occurrence Handle10.1016/j.addr.2004.07.008 Occurrence Handle15381333

    Article  PubMed  Google Scholar 

  6. A. Novotny J. Xiang W. Stummer N. S. Teuscher D. E. Smith R. F. Keep (2000) ArticleTitleMechanisms of 5-aminolevulinic acid uptake at the choroid plexus J. Neurochem. 75 321–328 Occurrence Handle10.1046/j.1471-4159.2000.0750321.x Occurrence Handle10854277

    Article  PubMed  Google Scholar 

  7. N. S. Teuscher A. Novotny R. F. Keep D. E. Smith (2000) ArticleTitleFunctional evidence for the presence of PEPT2 in rat choroid plexus: Studies with glycylsarcosine J. Pharmacol. Exp. Ther. 294 494–499 Occurrence Handle10900224

    PubMed  Google Scholar 

  8. N. S. Teuscher R. F. Keep D. E. Smith (2001) ArticleTitlePEPT2-mediated uptake of neuropeptides in rat choroid plexus Pharm. Res. 18 807–813 Occurrence Handle10.1023/A:1011088413043 Occurrence Handle11474785

    Article  PubMed  Google Scholar 

  9. C. Shu H. Shen N. S. Teuscher P. J. Lorenzi R. F. Keep D. E. Smith (2002) ArticleTitleRole of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: Studies in rat choroid plexus epithelial cells in primary culture J. Pharmacol. Exp. Ther. 301 820–829 Occurrence Handle10.1124/jpet.301.3.820 Occurrence Handle12023509

    Article  PubMed  Google Scholar 

  10. H. Shen D. E. Smith R. F. Keep F. C. Brosius SuffixIII (2004) ArticleTitleImmunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain Mol. Pharm. 1 248–256 Occurrence Handle10.1021/mp049944b Occurrence Handle15981584

    Article  PubMed  Google Scholar 

  11. N. S. Teuscher H. Shen C. Shu J. Xiang R. F. Keep D. E. Smith (2004) ArticleTitleCarnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice J. Neurochem. 89 375–382 Occurrence Handle15056281

    PubMed  Google Scholar 

  12. N. Strazielle J.-F. Ghersi-Egea (1999) ArticleTitleDemonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics J. Neurosci. 19 6275–6289 Occurrence Handle10414957

    PubMed  Google Scholar 

  13. S. Theis B. Hartrodt G. Kottra K. Neubert H. Daniel (2002) ArticleTitleDefining minimal structural features in substrates of the H+/peptide cotransporter PEPT2 using novel amino acid and dipeptide derivatives Mol. Pharmacol. 61 214–221 Occurrence Handle10.1124/mol.61.1.214 Occurrence Handle11752223

    Article  PubMed  Google Scholar 

  14. B. Alberts D. Bray J. Lewis M. Raff K. Roberts J. D. Watson (1994) Molecular Biology of the Cell EditionNumber3 Garland Publishing Inc. New York 610–611

    Google Scholar 

  15. H. Daniel G. Kottra (2004) ArticleTitleThe proton oligopeptide cotransporter family SLC15 in physiology and pharmacology Pflugers Arch. 447 610–618 Occurrence Handle10.1007/s00424-003-1101-4 Occurrence Handle12905028

    Article  PubMed  Google Scholar 

  16. D. Herrera-Ruiz G. T. Knipp (2003) ArticleTitleCurrent perspectives on established and putative mammalian oligopeptide transporters J. Pharm. Sci. 92 691–714 Occurrence Handle10.1002/jps.10303 Occurrence Handle12661057

    Article  PubMed  Google Scholar 

  17. I. Rubio-Aliaga H. Daniel (2002) ArticleTitleMammalian peptide transporters as targets for drug delivery Trends in Pharmacol. Sci. 23 434–440 Occurrence Handle10.1016/S0165-6147(02)02072-2

    Article  Google Scholar 

  18. H. Daniel I. Rubio-Aliaga (2003) ArticleTitleAn update on renal peptide transporters Am. J. Physiol. 284 F885–F892

    Google Scholar 

  19. H. Shen D. E. Smith R. F. Keep J. Xiang F. C. Brosius SuffixIII (2003) ArticleTitleTargeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus J. Biol. Chem. 278 4786–4791 Occurrence Handle10.1074/jbc.M207397200 Occurrence Handle12473671

    Article  PubMed  Google Scholar 

  20. S. M. Ocheltree H. Shen Y. Hu J. Xiang R. F. Keep D. E. Smith (2004) ArticleTitleRole of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice Pharm. Res. 21 1680–1685 Occurrence Handle10.1023/B:PHAM.0000041465.89254.05 Occurrence Handle15497696

    Article  PubMed  Google Scholar 

  21. S. M. Ocheltree H. Shen Y. Hu J. Xiang R. F. Keep D. E. Smith (2004) ArticleTitleMechanisms of cefadroxil uptake in the choroid plexus: studies in wild-type and PEPT2 knockout mice J. Pharm. Exp. Ther. 308 462–467 Occurrence Handle10.1124/jpet.103.060400

    Article  Google Scholar 

  22. R. Dringen B. Pfeiffer B. Hamprecht (1999) ArticleTitleSynthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione J. Neurosci. 19 562–569 Occurrence Handle9880576

    PubMed  Google Scholar 

  23. P. Fürst P. Stehle (2004) Glutamine and glutamine-containing dipeptides L. A. Cynober (Eds) Metabolic and Therapeutic Aspects of Amino Acids in Clinical Nutrition EditionNumber2 CRC Press Boca Raton, FL 613–631

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants R01GM035498 (D.E.S.), R01NS034709 and P01HL018575 (R.F.K.). Scott M. Ocheltree was supported by an AFPE Pre-Doctoral Fellowship and the Pharmacological Sciences Training Program of the National Institutes of Health (GM07767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Ocheltree, S.M., Xiang, J. et al. Glycyl-l-Glutamine Disposition in Rat Choroid Plexus Epithelial Cells in Primary Culture: Role of PEPT2. Pharm Res 22, 1281–1286 (2005). https://doi.org/10.1007/s11095-005-5261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-5261-0

Key Words

Navigation