Skip to main content

Advertisement

Log in

Uptake and Transport of PEG-Graft-Trimethyl-Chitosan Copolymer–Insulin Nanocomplexes by Epithelial Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The effect of chitosan and polyethylene glycol (PEG)ylated trimethyl chitosan copolymer structure on the uptake and transport of insulin nanocomplexes was evaluated and transport mechanisms were investigated.

Methods

Insulin nanocomplexes were prepared from chitosan and its copolymers by self-assembly. Complex uptake in Caco-2 cells was quantified by measuring the cell-associated fluorescence and cellular localization was visualized by confocal laser scanning microscopy (CLSM) using tetra-methyl-rhodamine isothiocyanate-labeled insulin. The transport of selected insulin complexes through Caco-2 monolayers was then investigated and compared with in vivo uptake by nasal epithelium in diabetic rats.

Results

All complexes were 200–400 nm in diameter, positively charged, and displayed an insulin loading efficiency of approximately 90%. In vitro release of insulin from the complexes was dependent on the medium pH. Insulin uptake was enhanced by nanocomplex formation, and was dependent on incubation time, temperature, and concentration. Complex uptake in Caco-2 cells was inhibited by 25.2 ± 1.3%, 13.0 ± 1.0%, and 16.6 ± 0.7% in the presence of cytochalasin D, sodium azide, and 2,4-dinitrophenol, respectively. The uptake mechanism was assumed to be adsorptive endocytosis. Additionally, cell uptake efficiency was shown to be influenced by a combination of polymer molecular weight, viscosity, and positive charge density. However, none of the nanocomplexes displayed improved transport properties when compared to insulin transport data after 2 h incubation with Caco-2 monolayers. This result was further confirmed with animal experiments.

Conclusions

Small, stable insulin nanocomplexes were formed using PEGylated trimethyl chitosan copolymers, which significantly enhanced the uptake of insulin in Caco-2 cells by adsorptive endocytosis. However, nanocomplexation did not seem to enhance transcellular insulin transport across cell monolayers, which is in line with animal data in rats. This implies that PEGylated trimethyl chitosan complexes with insulin need further optimization and the Caco-2 cell line is a predictable in vitro cell culture model for drug absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. P. Sayani Y. W. Chien (1996) ArticleTitleSystemic delivery of peptides and proteins across absorptive mucosae Crit. Rev. Ther. Drug Carrier Syst. 13 85–184 Occurrence Handle8853960 Occurrence Handle1:CAS:528:DyaK28XlsV2qt7Y%3D

    PubMed  CAS  Google Scholar 

  2. L. Illum (2003) ArticleTitleNasal drug delivery—possibilities, problems and solutions J. Control. Release 87 187–198 Occurrence Handle12618035 Occurrence Handle10.1016/S0168-3659(02)00363-2 Occurrence Handle1:CAS:528:DC%2BD3sXhsFOls7c%3D

    Article  PubMed  CAS  Google Scholar 

  3. R. T. Woodyatt (1922) ArticleTitleThe clinical use of insulin J. Metab. Res. 2 793 Occurrence Handle1:CAS:528:DyaB3sXhvVOrsw%3D%3D

    CAS  Google Scholar 

  4. C. McMartin L. E. Hutchinson R. Hyde G. E. Peters (1987) ArticleTitleAnalysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity J. Pharm. Sci. 76 535–540 Occurrence Handle2889824 Occurrence Handle1:CAS:528:DyaL2sXlvFShurg%3D

    PubMed  CAS  Google Scholar 

  5. V. H. L. Lee (1990) ArticleTitleProtease inhibitors and penetration enhancers as approaches to modify peptide absorption J. Control. Release 13 213–223 Occurrence Handle10.1016/0168-3659(90)90011-H Occurrence Handle1:CAS:528:DyaK3cXmtlOlsL4%3D

    Article  CAS  Google Scholar 

  6. N. F. Farraj B. R. Johansen S. S. Davis L. Illum (1990) ArticleTitleNasal administration of insulin using bioadhesive microspheres as a delivery system J. Control. Release 13 253–261 Occurrence Handle10.1016/0168-3659(90)90016-M Occurrence Handle1:CAS:528:DyaK3cXmtlOktr8%3D

    Article  CAS  Google Scholar 

  7. F. M. H. M. Merkus N. G. M. Schipper W. A. J. J. Hermens V. S. G. Romeijin J. C. Verhoef (1993) ArticleTitleAbsorption enhancers in nasal drug delivery: efficacy and safety J. Control. Release 24 201–208 Occurrence Handle10.1016/0168-3659(93)90179-9 Occurrence Handle1:CAS:528:DyaK3sXls1OmsLY%3D

    Article  CAS  Google Scholar 

  8. L. Illum H. Jorgensen H. Bisgaard O. Krogsgaard N. Rossing (1987) ArticleTitleBioadhesive microspheres as a potential nasal drug delivery system Int. J. Pharm. 39 189–199 Occurrence Handle10.1016/0378-5173(87)90216-X Occurrence Handle1:CAS:528:DyaL2sXmt1eitLw%3D

    Article  CAS  Google Scholar 

  9. K. A. Janes P. Calvo M. J. Alonso (2001) ArticleTitlePolysaccharide colloidal particles as delivery systems for macromolecules Adv. Drug Deliv. Rev. 47 83–97 Occurrence Handle11251247 Occurrence Handle10.1016/S0169-409X(00)00123-X Occurrence Handle1:CAS:528:DC%2BD3MXhvVajsrY%3D

    Article  PubMed  CAS  Google Scholar 

  10. L. Illum I. Jabbal-Gill M. Hinchcliffe A. N. Fisher S. S. Davis (2001) ArticleTitleChitosan as a novel nasal delivery system for vaccines Adv. Drug Deliv. Rev. 51 81–96 Occurrence Handle11516781 Occurrence Handle10.1016/S0169-409X(01)00171-5 Occurrence Handle1:CAS:528:DC%2BD3MXmtV2ntLc%3D

    Article  PubMed  CAS  Google Scholar 

  11. R. Fernández-Urrusuno P. Calvo C. Remuñán-López J. Vila-Jato M. Alonso (1999) ArticleTitleEnhancement of nasal absorption of insulin using chitosan nanoparticles Pharm. Res. 16 1576–1581 Occurrence Handle10554100

    PubMed  Google Scholar 

  12. A. M. Dyer M. Hinchcliffe P. Watts J. Castile I. Jabbal-Gill R. Nankervis A. Smith L. Illum (2002) ArticleTitleNasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles Pharm. Res. 19 998–1008 Occurrence Handle12180553 Occurrence Handle10.1023/A:1016418523014 Occurrence Handle1:CAS:528:DC%2BD38Xltl2isLk%3D

    Article  PubMed  CAS  Google Scholar 

  13. P. Artursson T. Lindmark S. S. Davis L. Illum (1994) ArticleTitleEffect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2 cells) Pharm. Res. 11 1358–1361 Occurrence Handle7816770 Occurrence Handle10.1023/A:1018967116988 Occurrence Handle1:CAS:528:DyaK2cXls12ltbg%3D

    Article  PubMed  CAS  Google Scholar 

  14. S. Mao X. Shuai F. Unger M. Wittmar X. Xie T. Kissel (2005) ArticleTitleSynthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers Biomaterials 26 6343–6356 Occurrence Handle15913769 Occurrence Handle10.1016/j.biomaterials.2005.03.036 Occurrence Handle1:CAS:528:DC%2BD2MXlsVCktL0%3D

    Article  PubMed  CAS  Google Scholar 

  15. F. Delie (1998) ArticleTitleEvaluation of nano- and microparticle uptake by the gastrointestinal tract Adv. Drug Deliv. Rev. 34 221–233 Occurrence Handle10837679 Occurrence Handle10.1016/S0169-409X(98)00041-6 Occurrence Handle1:CAS:528:DyaK1cXnsFWlt7w%3D

    Article  PubMed  CAS  Google Scholar 

  16. S. McClean E. Prosser E. Meehan D. O'Malley N. Clarke Z. Ramtoola D. Brayden (1998) ArticleTitleBinding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia Eur. J. Pharm. Sci. 6 153–163 Occurrence Handle9795038 Occurrence Handle1:CAS:528:DyaK1cXhsFejt7s%3D

    PubMed  CAS  Google Scholar 

  17. S. Mao X. Shuai F. Unger M. Simon D. Bi T. Kissel (2004) ArticleTitleThe depolymerization of chitosan: effects on physicochemical and biological properties Int. J. Pharm. 281 45–54 Occurrence Handle15288342 Occurrence Handle10.1016/j.ijpharm.2004.05.019 Occurrence Handle1:CAS:528:DC%2BD2cXmtFCmurc%3D

    Article  PubMed  CAS  Google Scholar 

  18. M. Simon M. Wittmar U. Bakowsky T. Kissel (2004) ArticleTitleSelf-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol))-graft-poly(l-lactic acid): a novel carrier for transmucosal delivery of peptides Bioconjug. Chem. 15 841–849 Occurrence Handle15264872 Occurrence Handle10.1021/bc0341627 Occurrence Handle1:CAS:528:DC%2BD2cXlt1ynsro%3D

    Article  PubMed  CAS  Google Scholar 

  19. T. Merdan K. Kunath D. Fischer J. Kopecek T. Kissel (2002) ArticleTitleIntracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments Pharm. Res. 19 140–146 Occurrence Handle11883640 Occurrence Handle10.1023/A:1014212630566 Occurrence Handle1:CAS:528:DC%2BD38XitVSmu7k%3D

    Article  PubMed  CAS  Google Scholar 

  20. E. Walter T. Kissel (1995) ArticleTitleHeterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport Eur. J. Pharm. Sci. 3 215–230 Occurrence Handle1:CAS:528:DyaK2MXntl2htrY%3D Occurrence Handle10.1016/0928-0987(95)00010-B

    Article  CAS  Google Scholar 

  21. I. Behrens A. I. V. Pena M. J. Alonso T. Kissel (2002) ArticleTitleComparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport Pharm. Res. 19 1185–1193 Occurrence Handle12240945 Occurrence Handle10.1023/A:1019854327540 Occurrence Handle1:CAS:528:DC%2BD38XmtlGgs7g%3D

    Article  PubMed  CAS  Google Scholar 

  22. J. Z. Knaul S. M. Hudson K. A. M. Creber (1999) ArticleTitleImproved mechanical properties of chitosan fibers J. Appl. Polym. Sci. 72 1721–1732 Occurrence Handle10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V Occurrence Handle1:CAS:528:DyaK1MXis1Gmur4%3D

    Article  CAS  Google Scholar 

  23. M. M. Zegers K. J. Zaal S. C. IJzendoorn Particlevan K. Klappe D. Hoekstra (1998) ArticleTitleActin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 Cells Mol. Biol. Cell. 9 1939–1949 Occurrence Handle9658181 Occurrence Handle1:CAS:528:DyaK1cXkslynsbY%3D

    PubMed  CAS  Google Scholar 

  24. M. G. Qaddoumi H. Ueda J. Yang J. Davda V. Labhasetwar V. H. L. Lee (2004) ArticleTitleThe characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers Pharm. Res. 21 641–648 Occurrence Handle15139521 Occurrence Handle1:CAS:528:DC%2BD2cXjsVWqs7s%3D

    PubMed  CAS  Google Scholar 

  25. N. G. Schipper K. M. Varum P. Artursson (1996) ArticleTitleChitosans as absorption enhancers for poorly absorbable drugs: 1. Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells Pharm. Res. 13 1686–1692 Occurrence Handle8956335 Occurrence Handle10.1023/A:1016444808000 Occurrence Handle1:CAS:528:DyaK28XnsVOhs70%3D

    Article  PubMed  CAS  Google Scholar 

  26. N. G. Schipper S. Olsson J. A. Hoogstraate A. G. deBoer K. M. Vårum P. Artursson (1997) ArticleTitleChitosans as absorption enhancers for poorly absorbable drugs: 2. Mechanism of absorption enhancement Pharm. Res. 14 923–929 Occurrence Handle9244151 Occurrence Handle10.1023/A:1012160102740 Occurrence Handle1:CAS:528:DyaK2sXkvVCitbw%3D

    Article  PubMed  CAS  Google Scholar 

  27. G. Ranaldi I. Marigliano I. Vespiignani G. Perozzi Y. Sambuy (2002) ArticleTitleThe effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line J. Nutr. Biochem. 13 157–167 Occurrence Handle11893480 Occurrence Handle1:CAS:528:DC%2BD38XhvVWktb0%3D Occurrence Handle10.1016/S0955-2863(01)00208-X

    Article  PubMed  CAS  Google Scholar 

  28. C. P. Wan C. S. Park B. H. Lau (1993) ArticleTitleA rapid and simple microfluorometric phagocytosis assay J. Immunol. Methods 162 1–7 Occurrence Handle8509646 Occurrence Handle10.1016/0022-1759(93)90400-2 Occurrence Handle1:CAS:528:DyaK3sXks12ru78%3D

    Article  PubMed  CAS  Google Scholar 

  29. M. Huang E. Khor L.-Y. Lim (2004) ArticleTitleUptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation Pharm. Res. 21 344–353 Occurrence Handle15032318 Occurrence Handle10.1023/B:PHAM.0000016249.52831.a5 Occurrence Handle1:CAS:528:DC%2BD2cXhtlWqtr4%3D

    Article  PubMed  CAS  Google Scholar 

  30. M. P. Desai V. Labhasetwar E. Walter R. J. Levy G. L. Amidon (1997) ArticleTitleThe mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent Pharm. Res. 14 1568–1573 Occurrence Handle9434276 Occurrence Handle10.1023/A:1012126301290 Occurrence Handle1:CAS:528:DyaK2sXotVGnu7c%3D

    Article  PubMed  CAS  Google Scholar 

  31. T. Jung W. Kamm A. Bteitenbach E. Kaiserling J. X. Xiao T. Kissel (2000) ArticleTitleBiodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 50 147–160 Occurrence Handle10840198 Occurrence Handle1:CAS:528:DC%2BD3cXjslyisrs%3D

    PubMed  CAS  Google Scholar 

  32. L. Gonzalez-Mariscal R. G. Contreras J. J. Bolivar A. Ponce B. Chavez de Ramirez M. Cereijido (1990) ArticleTitleRole of calcium in tight junction formation between epithelial cells Am. J. Physiol. 259 C978–C986 Occurrence Handle2124417 Occurrence Handle1:CAS:528:DyaK3MXnvFejuw%3D%3D

    PubMed  CAS  Google Scholar 

  33. A. B. J. Noach Y. Kurosaki M. C. M. Blom-Rosmalen A. G. Boer Particlede D. D. Breimer (1993) ArticleTitleCell-polarity dependent effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayers Int. J. Pharm. 90 229–237 Occurrence Handle10.1016/0378-5173(93)90195-L Occurrence Handle1:CAS:528:DyaK3sXit1CqtLw%3D

    Article  CAS  Google Scholar 

  34. K. Ohtake T. Maeno H. Ueda M. Ogihara H. Natsume Y. Morimoto (2003) ArticleTitlePoly-l-arginine enhances paracellular permeability via serine/rhreonine phosphorylation of ZO-1 and tyrosine dephosphorylation of occludin in rabbit nasal epithelium Pharm. Res. 20 1838–1845 Occurrence Handle14661930 Occurrence Handle1:CAS:528:DC%2BD3sXptVChur4%3D

    PubMed  CAS  Google Scholar 

  35. Z. Ma L. Lim (2003) ArticleTitleUptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles Pharm. Res. 20 1812–1819 Occurrence Handle14661926 Occurrence Handle10.1023/B:PHAM.0000003379.76417.3e Occurrence Handle1:CAS:528:DC%2BD3sXptVChtbw%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Shirui Mao cordially thanks Deutsche Akademische Austauschdienst (DAAD) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kissel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, S., Germershaus, O., Fischer, D. et al. Uptake and Transport of PEG-Graft-Trimethyl-Chitosan Copolymer–Insulin Nanocomplexes by Epithelial Cells. Pharm Res 22, 2058–2068 (2005). https://doi.org/10.1007/s11095-005-8175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-8175-y

Key Words

Navigation