Skip to main content
Log in

Moisture-Induced Aggregation of Lyophilized DNA and its Prevention

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the moisture-induced aggregation (i.e., a loss of solubility in water) of DNA in a solid state and to develop rational strategies for its prevention.

Methods

Lyophilized calf thymus DNA was exposed to relative humidity (RH) levels from 11% to 96% at 55°C. Following a 24-h incubation under these stressed conditions, the solubility of DNA in different aqueous solutions and the water uptake of DNA were determined. The effects of solution pH and NaCl concentration and the presence of excipients (dextran and sucrose) on the subsequent moisture-induced aggregation of DNA were examined. The extent of this aggregation was compared with that of a supercoiled plasmid DNA.

Results

Upon a 24-h incubation at 55°C, calf thymus DNA underwent a major moisture-induced aggregation reaching a maximum at a 60% RH; in contrast, the single-stranded DNA exhibited the maximal aggregation at a 96% RH. Moisture uptake and aqueous solubility studies revealed that the aggregation was primarily due to formation of inter-strand hydrogen bonds. Aggregation of DNA also proceeded at 37°C, albeit at a slower rate. Solution pH and NaCl concentration affected DNA aggregation only at higher RH levels. This aggregation was markedly reduced by co-lyophilization with dextran or sucrose (but not with PEG). The aggregation pattern of a supercoiled plasmid DNA was similar to that of its linear calf thymus counterpart.

Conclusions

The moisture-induced aggregation of lyophilized DNA is caused mainly by non-covalent cross-links between disordered, single-stranded regions of DNA. At high RH levels, renaturation and aggregation of DNA compete with each other. The aggregation is minimized at low RH levels, at optimal solution pH and salt concentration prior to lyophilization, and by co-lyophilizing with excipients capable of forming multiple hydrogen bonds, e.g., dextran and sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://www.wiley.co.uk/genetherapy/clinical/ (accessed 03/15/06).

  2. R. C. Mulligan. The basic science of gene therapy. Sci. 260:926–932 (1993).

    Article  CAS  Google Scholar 

  3. L. Wang, K. Takabe, S. M. Bidlingmaier, R. Charles, and I. M. Verma. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc. Natl. Acad. Sci. USA 96:3906–3910 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. F. McCormick. Cancer gene therapy: fringe or cutting edge? Nature Revs. 1:130–141 (2001).

    Article  CAS  Google Scholar 

  5. D. R. Shaw and T. V. Strong. DNA vaccines for cancer. Front. Biosci. 11:1189–1198 (2006).

    CAS  PubMed  Google Scholar 

  6. A. M. Abdelnoor. Plasmid DNA vaccines. Current Drug Targets: Immune Endocrine and Metabolic Disorders 1:79–92 (2001).

    Article  CAS  Google Scholar 

  7. J. Schultz, G. Dollenmaier, and K. Molling. Update on antiviral DNA vaccine research (1998–2000). Intervirology 43:197–217 (2001).

    Article  Google Scholar 

  8. C. R. Middaugh, R. K. Evans, D. L. Montgomery, and D. R. Casimiro. Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 87:130–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. R. Thomas. The denaturation of DNA. Gene 135:77–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. C. S. Lengsfeld, and T. J. Anchordoquy. Shear-induced degradation of plasmid DNA. J. Pharm. Sci. 91:1581–1589 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. R. Liu, R. Langer, and A. M. Klibanov. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng. 37:177–184 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. H. R. Costantino, R. Langer, and A. M. Klibanov. Moisture-induced aggregation of lyophilized insulin. Pharm. Res. 11:21–29 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. A. M. Klibanov and J. A. Schefiliti. On the relationship between conformation and stability in solid pharmaceutical protein formulations. Biotechnol. Lett. 26:1103–1106 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. M. Falk, K. A. Hartman, Jr., and R. C. Lord. Hydration of deoxyribonucleic acid. III. A spectroscopic study of the effect of hydration on the structure of deoxyribonucleic acid. J. Am. Chem. Soc. 85:391–394 (1963).

    Article  CAS  Google Scholar 

  15. S. L. Lee, P. G. Debenedetti, J. R. Errington, B. A. Pethica, and D. J. Moore. A calorimetric and spectroscopic study of DNA at low hydration. J. Phys. Chem. B. 108:3098–3106 (2004).

    Article  CAS  Google Scholar 

  16. M. H. Zehfus and W. C. Johnson, Jr. Conformation of P-form DNA. Biopolymers 23:1269–1281 (1984).

    Article  CAS  PubMed  Google Scholar 

  17. N. Lavalle, S. A. Lee, and A. Rupprecht. Counterion effects on the physical properties and the A to B transition of calf thymus DNA films. Biopolymers 30:877–887 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. S. W. Poxon and J. A. Hughes. The effect of lyophilization on plasmid DNA activity. Pharm. Dev. Technol. 5:115–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. I. A. Novikov and B. I. Sukhorukov. On the role of water in the thermal instability of DNA. Molekulyarnaya Biologiya 11:521–530 (1977).

    CAS  Google Scholar 

  20. J. F. Young. Humidity control in the laboratory using salt solutions — a review. J. Appl. Chem. 17:241–245 (1967).

    Article  CAS  Google Scholar 

  21. D. Voet and J. G. Voet. Biochemistry Wiley, New York, 1995, pp. 848–914.

    Google Scholar 

  22. O. L. Vaveliouk, G. I. Tseretely, and T. V. Belopolskaya. Thermal stability of DNA and its association with the process of vitrification. Tsitologiya 41:958–965 (1999).

    Google Scholar 

  23. M. Bastos, V. Castro, G. Mrevlishvili, and J. Teixeira. Hydration of ds-DNA and ss-DNA by neutron quasielastic scattering. Biophys. J. 86:3822–3827 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. M. A. Semenov and T. V. Bol’bukh. Study of conformational-dependent isotherms of DNA hydration. Biofizika 29:377–382 (1984).

    CAS  PubMed  Google Scholar 

  25. J. Hong, M. W. Capp, C. F. Anderson, R. M. Saecker, D. J. Felitsky, M. W. Anderson, and M. T. Record, Jr. Preferential intercations of glycine betaine and of urea with DNA: Implications for DNA hydration and for effects of these solutes on DNA stability. Biochemistry 43:14744–14758 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. G. K. Helmkamp and P. O. P. Ts’o. The secondary structures of nucleic acids in organic solvents. J. Am. Chem. Soc. 83:138–142 (1960).

    Article  Google Scholar 

  27. N. B. Bam, J. L. Cleland, J. Yang, M. C. Manning, J. F. Carpenter, R. F. Kelly, and T. W. Randolph. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J. Pharm. Sci. 87:1554–1559 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. H. Tabor. The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry 3:496–501 (1962).

    Article  Google Scholar 

  29. R. Mandel and G. D. Fasman. Chromatin models. Interaction between DNA and polypeptides containing L-lysine and L-valine: circular dichroism and thermal denaturation studies. Biochemistry 15:3122–3130 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. R. K. Agarwal and A. Peri. PCR amplification of highly GC-rich DNA template after denaturation by NaOH. Nucleic Acids Res. 21:5283–5284 (1993).

    CAS  PubMed  Google Scholar 

  31. A. J. E. Colvill and D. O. Jordan. Influence of ionic strength on the reversibility of the denaturation of DNA in dilute solution. J. Mol. Biol. 7:700–709 (1963).

    Article  CAS  PubMed  Google Scholar 

  32. T. O’Connor, S. Mansy, M. Bina, D. R. McMilin, M. A. Bruck, and R. S. Tobias. The pH-dependent structure of calf thymus DNA studied by Raman spectroscopy. Biophys. Chem. 15:53–64 (1982).

    Article  CAS  PubMed  Google Scholar 

  33. P. D. Lawley. Interaction studies with deoxyribonucleic acid. III. Effect of changes in sodium-ion concentration, pH, and temperature on the ultraviolet absorption spectrum of sodium thymonucleate. Biochim. Biophys. Acta. 21:481–488 (1958).

    Article  Google Scholar 

  34. Y. Mi and G. Wood. The application and mechanisms of polyethylene glycol 8000 on stabilizing lactate dehydrogenase during lyophilization. PDA J. Pharm. Sci. Technol. 58:191–202 (2004).

    Google Scholar 

  35. T. J. Anchordoquy, K.-I. Izutsu, T. W. Randolph, and J. F. Carpenter. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Arch. Biochem. Biophys. 390:35–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. L. Kreilgaard, S. Frokjaer, J. M. Flink, T. W. Randolph, and J. F. Carpenter. Effects of additives on the stability of recombinant human factor VIII during freeze-drying and storage in the dried solid. Arch. Biochem. Biophys. 360:121–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. T. J. Anchordoquy, T. K. Armstrong, and M. C. Molina. Low molecular weight dextrans stabilize nonviral vectors during lyophilization at low osmolalities: concentrating suspensions by rehydration to reduced volumes. J. Pharm. Sci. 94:1226–1236 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. S. D. Allison and T. J. Anchordoquy. Mechanisms of protection of cationic lipid–DNA complexes during lyophilization. J. Pharm. Sci. 89:682–691 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. J. Cherng, P. V. D. Wetering, H. Talsma, D. J. A. Crommelin, and W. E. Hennink. Freeze-drying of poly((2-dimethylamino)ethyl methacrylate)-based gene delivery systems. Pharm. Res. 14:1838–1841 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Grant GM26698 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Klibanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Klibanov, A.M. Moisture-Induced Aggregation of Lyophilized DNA and its Prevention. Pharm Res 24, 168–175 (2007). https://doi.org/10.1007/s11095-006-9138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9138-7

Key words

Navigation