Skip to main content

Advertisement

Log in

The Quantitative Prediction of CYP-mediated Drug Interaction by Physiologically Based Pharmacokinetic Modeling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective is to confirm if the prediction of the drug–drug interaction using a physiologically based pharmacokinetic (PBPK) model is more accurate. In vivo K i values were estimated using PBPK model to confirm whether in vitro K i values are suitable.

Method

The plasma concentration–time profiles for the substrate with coadministration of an inhibitor were collected from the literature and were fitted to the PBPK model to estimate the in vivo K i values. The AUC ratios predicted by the PBPK model using in vivo K i values were compared with those by the conventional method assuming constant inhibitor concentration.

Results

The in vivo K i values of 11 inhibitors were estimated. When the in vivo K i values became relatively lower, the in vitro K i values were overestimated. This discrepancy between in vitro and in vivo K i values became larger with an increase in lipophilicity. The prediction from the PBPK model involving the time profile of the inhibitor concentration was more accurate than the prediction by the conventional methods.

Conclusion

A discrepancy between the in vivo and in vitro K i values was observed. The prediction using in vivo K i values and the PBPK model was more accurate than the conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

CYP:

cytochrome P450

F :

bioavailability

F a :

fraction absorbed

F g :

intestinal availability

F h :

hepatic availability

I p,max,u :

maximum unbound concentration in the circulating blood

I u,max :

maximum unbound concentration at the inlet to the liver

K i :

inhibition constant

PBPK:

physiologically based pharmacokinetic

Q h :

hepatic blood flow rate

References

  1. K. Ito, T. Iwatsubo, S. Kanamitsu, K. Ueda, H. Suzuki, and Y. Sugiyama. Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol. Rev. 50:387–412 (1998).

    PubMed  CAS  Google Scholar 

  2. J. H. Lin, and A. Y. Lu. Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet. 35:361–390 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. G. T. Tucker, J. B. Houston, and S. M. Huang. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential—toward a consensus. Pharm. Res. 18:1071–1080 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. Food and Drug Administration. Guidance for industry: in vivo drug metabolism/drug interaction studies—study design, data analysis, and recommendations for dosing and labeling, (1999).

  5. T. D. Bjornsson, J. T. Callaghan, H. J. Einolf, V. Fischer, L. Gan, S. Grimm, J. Kao, S. P. King, G. Miwa, L. Ni, G. Kumar, J. McLeod, R. S. Obach, S. Roberts, A. Roe, A. Shah, F. Snikeris, J. T. Sullivan, D. Tweedie, J. M. Vega, J. Walsh, and S. A. Wrighton. The conduct of in vitro and in vivo drug–drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. 31:815–832 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. M. Kato, T. Tachibana, K. Ito, and Y. Sugiyama. Evaluation of methods for predicting drug–drug interactions by Monte Carlo simulation. Drug Metab. Pharmacokinet. 18:121–127 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. K. Ito, H. S. Brown, and J. B. Houston. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br. J. Clin. Pharmacol. 57:473–486 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. R. S. Obach, R. L. Walsky, K. Venkatakrishnan, E. A. Gaman, J. B. Houston, and L. M. Tremaine. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J. Pharmacol. Exp. Ther. 316:336–348 (2005).

    Article  PubMed  Google Scholar 

  9. P. Poulin, and F. P. Theil. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J. Pharm. Sci. 91:1358–1370 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. K. Ito, K. Chiba, M. Horikawa, M. Ishigami, N. Mizuno, J. Aoki, Y. Gotoh, T. Iwatsubo, S. Kanamitsu, M. Kato, I. Kawahara, K. Niinuma, A. Nishino, N. Sato, Y. Tsukamoto, K. Ueda, T. Itoh, and Y. Sugiyama. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci. 4:E25 (2002).

    Article  PubMed  Google Scholar 

  11. D. M. Stresser, A. P. Blanchard, S. D. Turner, J. C. Erve, A. A. Dandeneau, V. P. Miller, and C. L. Crespi. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab. Dispos. 28:1440–1448 (2000).

    PubMed  CAS  Google Scholar 

  12. Methods of Drug interaction studies: Notification No.813 of the Pharmaceutical Affair Bureau, the Ministry of Health, Labour, Welfare, Japan (2001)

  13. L. L. von Moltke, A. L. Durol, S. X. Duan, and D. J. Greenblatt. Potent mechanism-based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole. Eur. J. Clin. Pharmacol. 56:259–261 (2000).

    Article  Google Scholar 

  14. K. L. Kunze, and W. F. Trager. Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem. Res. Toxicol. 6:649–656 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. W. K. Chan, and A. B. Delucchi. Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci. 67:3103–3112 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. K. M. Bertelsen, K. Venkatakrishnan, L. L. Von Moltke, R. S. Obach, and D. J. Greenblatt. Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine. Drug Metab. Dispos. 31:289–293 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. D. R. Jones, J. C. Gorski, M. A. Hamman, B. S. Mayhew, S. Rider, and S. D. Hall. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J. Pharmacol. Exp. Ther. 290:1116–1125 (1999).

    PubMed  CAS  Google Scholar 

  18. C. S. Ernest 2nd, S. D. Hall, and D. R. Jones. Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J. Pharmacol. Exp. Ther. 312:583–591 (2004).

    Article  PubMed  Google Scholar 

  19. J. H. Lillibridge, B. H. Liang, B. M. Kerr, S. Webber, B. Quart, B. V. Shetty, and C. A. Lee. Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab. Dispos. 26:609–616 (1998).

    PubMed  CAS  Google Scholar 

  20. M. Kato, K. Chiba, A. Hisaka, M. Ishigami, M. Kayama, N. Mizuno, Y. Nagata, S. Takakuwa, Y. Tsukamoto, K. Ueda, H. Kusuhara, K. Ito, and Y. Sugiyama. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab. Pharmacokinet. 18:365–372 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. M. Ishigam, M. Uchiyama, T. Kondo, H. Iwabuchi, S. Inoue, W. Takasaki, T. Ikeda, T. Komai, K. Ito, and Y. Sugiyama. Inhibition of in vitro metabolism of simvastatin by itraconazole in humans and prediction of in vivo drug–drug interactions. Pharm. Res. 18:622–631 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. N. Isoherranen, K. L. Kunze, K. E. Allen, W. L. Nelson, and K. E. Thummel. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab. Dispos. 32:1121–1131 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. R. P. Austin, P. Barton, S. L. Cockroft, M. C. Wenlock, and R. J. Riley. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab. Dispos. 30:1497–1503 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. K. Ito, K. Ogihara, S. Kanamitsu, and T. Itoh. Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab. Dispos. 31:945–954 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. S. Kanamitsu, K. Ito, C. E. Green, C. A. Tyson, N. Shimada, and Y. Sugiyama. Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm. Res. 17:419–426 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following companies for data collection, analysis and simulations: Ajonomoto Co., Inc., Astellas Pharma Inc., Chugai Pharmaceutical Co., Ltd., Daiichi Pharmaceutical Co., Ltd., Dainippon Pharmaceutical Co., Ltd., Esai Co., Ltd., Kaken Pharmaceutical Co., Ltd., Kowa Company, Ltd., Kyorin Pharmaceutical Co., Ltd., Kyowa Hakko Kogyo Co. Ltd., Meiji Seika Kaisya, Ltd., Mochida Pharmaceutical Co., Ltd., Nippon Boehringer Ingelheim Co., Ltd., Nippon Shinyaku Co., Ltd., Nissan Chemical industries, Ltd., Ono Pharmaceutical Co., Ltd., Organon Japan, Otsuka Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Factory, Inc., Pfizer Japan Inc., Sankyo Co., Ltd., Sanwa Kagaku Kenkyusho Co., Ltd., Taiho Pharmaceutical Co., Ltd., Taisho Pharmaceutical Co., Ltd., Takeda Chemical industries, Ltd., Tanabe Seiyaku Co., Ltd., Toray Industries Inc. The authors would also like to thank Drs. S. Suzuki, T. Sato and H. Ameniya for valuable discussions. We appreciate the Pharsight Corporation for providing us a license for the academic use of the computer program, WinNonlin(R), as the Pharsight Academic License (PAL) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Shitara, Y., Sato, H. et al. The Quantitative Prediction of CYP-mediated Drug Interaction by Physiologically Based Pharmacokinetic Modeling. Pharm Res 25, 1891–1901 (2008). https://doi.org/10.1007/s11095-008-9607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9607-2

KEY WORDS

Navigation