Skip to main content

Advertisement

Log in

“Click” Conjugation of Peptide on the Surface of Polymeric Nanoparticles for Targeting Tumor Angiogenesis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Angiogenesis plays a critical role in tumor growth. This phenomena is regulated by numerous mediators such as vascular endothelial growth factor (VEGF). CBO-P11, a cyclo-peptide, has proven to specifically bind to receptors of VEGF and may be used as targeting ligand for tumor angiogenesis. We herein report the design of novel nanoparticles conjugated to CBO-P11 in order to specifically target tumor site.

Methods

The conjugation of CBO-P11 on the surface of poly(vinylidene fluoride) (PVDF) nanoparticles was investigated using the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition known as “click” reaction. CBO-P11 was modified with a near-infrared cyanine dye bearing an alkyne function, allowing both “click” coupling on azido-modified nanoparticles and fluorescence labelling. Each step of this nanodevice construction was judiciously performed in aqueous solution and successfully characterized. The cytotoxicity of nanoparticles was evaluated in human brain endothelial cell line and their affinity for VEGF receptors was determined via fluorescence-based uptake assays on porcine aortic endothelial cell line.

Results

Nanoparticles were found to be spherical, dense, monodisperse and stable. No cytotoxicity was observed after four days of incubation demonstrating the biocompatibility of nanoparticles. Fluorescence highlighted the specific interaction of these functionalized nanoparticles for VEGF receptors, suggesting that the targeting peptide bioactivity was retained.

Conclusions

These results demonstrate the potential of these functionalized nanoparticles for targeting tumor angiogenesis and their possible use as multifunctional plateform for cancer treament if coupled with therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

acrylic acid

ACN:

acetonitrile

DCM:

dichloromethane

DIEA:

diisopropylethylamine

DLS:

dynamic light scattering

DMEM:

Dulbecco’s modified eagle medium

EDC:

ethyl-3(3dimethylaminopropyl)carbodiimide

EDTA:

ethylenediaminetetraacetic acid

EGM-2:

endothelial growth medium

ESI:

electrospray ionization

FBS:

fetal bovine serum

FESEM:

field emission scanning electron microscope

FTIR:

fourier transform infrared

HCMEC:

human brain endothelial cells

HOBt:

N-hydroxybenzotriazole

HPLC:

high-performance liquid chromatography

HUVEC:

human umbilical vein endothelial cells

IC50 :

half-maximal inhibitory concentration

Ip:

polydispersity index

MALDI-TOF:

matrix-assisted laser desorption/ionization-time of flight

mTEG:

modified tetraethyleneglycol

NIR:

near-infrared

NMP:

N-methylpyrrolidone

NMR:

nuclear magnetic resonance

PAA:

poly(acrylic acid)

PAE:

porcine aortic endothelial cells

PBS:

phosphate-buffered saline

POA:

perfluorooctanoic acid

PVDF:

poly(vinylidene fluoride)

Rg:

radius of gyration

Rh:

hydrodynamic radius

SANS:

small-angle neutron scattering

SLS:

static light scattering

t-BuOH:

tertio-butanol

TFA:

trifluoroactic acid

THF:

tetrahydrofurane

TIS:

triisopropylsilane

UV:

ultra-violet

VEGF:

vascular endothelial growth factor

VEGFR:

receptor of VEGF

VF2:

vinylidene fluoride

WST-1:

4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate

XPS:

X-ray photoelectron spectroscopy

REFERENCES

  1. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

    Article  PubMed  CAS  Google Scholar 

  2. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 1986;46(12 Part 1):6387–92.

    PubMed  CAS  Google Scholar 

  3. Ruoslahti E. Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol. 2000;10(6):435–42.

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  5. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255(5047):989–91.

    Article  PubMed  Google Scholar 

  6. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992;187(3):1579–86.

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328–35.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002;29(6, Supplement 16):10–4.

    PubMed  CAS  Google Scholar 

  9. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    Article  PubMed  CAS  Google Scholar 

  10. Eichhorn ME, Strieth S, Dellian M. Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resist Updat. 2004;7(2):125–38.

    Article  PubMed  CAS  Google Scholar 

  11. Zilberberg L, Shinkaruk S, Lequin O, Rousseau B, Hagedorn M, Costa F, et al. Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor. J Biol Chem. 2003;278(37):35564–73.

    Article  PubMed  CAS  Google Scholar 

  12. Braga FJC, Rogero SO, Couto AA, Marques RFC, Ribeiro AA, Campos JSdC. Characterization of PVDF/HAP composites for medical applications. Mater Res. 2007;10:247–51.

    CAS  Google Scholar 

  13. Ding N, Pacetti SD, Tang F-W, Gada M, Roorda W. XIENCE V™ stent design and rationale. J Interv Cardiol. 2009;22:S18–27.

    Article  Google Scholar 

  14. Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23(16):3487–93. doi:10.1016/S0142-9612(02)00070-4.

    Article  PubMed  CAS  Google Scholar 

  15. Conze J, Junge K, Weiß C, Anurov M, Oettinger A, Klinge U, et al. New polymer for intra-abdominal meshes—PVDF copolymer. J Biomed Mater Res B Appl Biomater. 2008;87B(2):321–8.

    Article  CAS  Google Scholar 

  16. Berger D. Prevention of parastomal hernias by prophylactic use of a specially designed intraperitoneal onlay mesh (Dynamesh IPST®). Hernia. 2008;12(3):243–6.

    Article  PubMed  CAS  Google Scholar 

  17. Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H-J. Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials. 2003;24(21):3663–70. doi:10.1016/S0142-9612(03)00235-7.

    Article  PubMed  CAS  Google Scholar 

  18. Valentini RF, Vargo TG, Gardella Jr JA, Aebischer P. Electrically charged polymeric substrates enhance nerve fibre outgrowth In vitro. Biomaterials. 1992;13(3):183–90. doi:10.1016/0142-9612(92)90069-Z.

    Article  PubMed  CAS  Google Scholar 

  19. Deshayes S, Maurizot V, Clochard M-C, Berthelot T, Baudin C, Déléris G. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation. Radiat Phys Chem. 2010;79(3):208–13.

    Article  CAS  Google Scholar 

  20. von Maltzahn G, Ren Y, Park J-H, Min D-H, Kotamraju VR, Jayakumar J, et al. Tumor cell targeting with “click” nanoparticles. Bioconjug Chem. 2008;19(8):1570–8.

    Article  Google Scholar 

  21. Opsteen JA, Brinkhuis RP, Teeuwen RLM, Lowik DWPM, Hest JCMV. “Clickable” polymersomes. Chem Commun. 2007;30:3136–8.

    Article  Google Scholar 

  22. Nicolas J, Bensaid F, Desmaele D, Grogna M, Detrembleur C, Andrieux K, et al. Synthesis of highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of click chemistry. Macromolecules. 2008;41(22):8418–28.

    Article  CAS  Google Scholar 

  23. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(13):1872–4.

    PubMed  CAS  Google Scholar 

  24. Gonçalves M, Estieu-Gionnet K, Berthelot T, Laïn G, Bayle M, Canron X, et al. Design, synthesis, and evaluation of original carriers for targeting vascular endothelial growth factor receptor interactions. Pharm Res. 2005;22(8):1411–21. doi:10.1007/s11095-005-5265-9.

    Article  PubMed  Google Scholar 

  25. Hilderbrand SA, Kelly KA, Weissleder R, Tung C-H. Monofunctional near-infrared fluorochromes for imaging applications. Bioconjug Chem. 2005;16(5):1275–81.

    Article  PubMed  CAS  Google Scholar 

  26. Moody CA, Field JA. Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ Sci Technol. 2000;34(18):3864–70.

    Article  CAS  Google Scholar 

  27. Chansiri G, Lyons RT, Patel MV, Hem SL. Effect of surface charge on the stability of oil/water emulsions during steam sterilization. J Pharm Sci. 1999;88(4):454–8.

    Article  PubMed  CAS  Google Scholar 

  28. Steffens GCM, Nothdurft L, Buse G, Thissen H, Höcker H, Klee D. High density binding of proteins and peptides to poly(D, L-lactide) grafted with polyacrylic acid. Biomaterials. 2002;23(16):3523–31.

    Article  PubMed  CAS  Google Scholar 

  29. Stannett V. Grafting. Radiat Phys Chem. 1981;18(1–2):215–22.

    CAS  Google Scholar 

  30. Betz N, Begue J, Gonçalves M, Gionnet K, Déléris G, Le Moël A. Functionalisation of PAA radiation grafted PVDF. Nucl Instrum Methods Phys Res Sect B. 2003;208:434–41.

    Article  CAS  Google Scholar 

  31. Clochard MC, Begue J, Lafon A, Caldemaison D, Bittencourt C, Pireaux JJ, et al. Tailorring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer. 2004;45(26):8683–94.

    Article  CAS  Google Scholar 

  32. Chapiro A. In: Gaylord NG, Adler G, editors. Radiation chemistry of polymeric systems high polymers. New York: Interscience; 1962.

    Google Scholar 

  33. Rostovtsev V, Green L, Fokin V, Sharpless K. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41(14):2596–9.

    Article  CAS  Google Scholar 

  34. Perez-Balderas F, Ortega-Munoz M, Morales-Sanfrutos J, Hernandez-Mateo F, Calvo-Flores FG, Calvo-Asin JA, et al. Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org Lett. 2003;5(11):1951–4.

    Article  PubMed  CAS  Google Scholar 

  35. Hiki S, Kataoka K. A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for “click” conjugation. Bioconjug Chem. 2007;18(6):2191–6.

    Article  PubMed  CAS  Google Scholar 

  36. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18:17–25.

    Article  PubMed  CAS  Google Scholar 

  37. Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996;4:15–20.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to François Bauer (Piezotech SA) for the PVDF nanoparticles synthesis. We also thank Dr. Christophe Schatz (Laboratoire de Chimie des Polymères Organiques, UMR CNRS 5629, University of Bordeaux, France) for dynamic light scattering experiments and La Ligue Contre le Cancer for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Clochard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure

(DOC 91.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshayes, S., Maurizot, V., Clochard, MC. et al. “Click” Conjugation of Peptide on the Surface of Polymeric Nanoparticles for Targeting Tumor Angiogenesis. Pharm Res 28, 1631–1642 (2011). https://doi.org/10.1007/s11095-011-0398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0398-5

KEY WORDS

Navigation