Skip to main content
Log in

Poloxamer Thermogel Systems as Medium for Crystallization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To prepare a thermoreversible gel system able to work as a medium for crystallization at around 20°C, allowing easy retrieval of crystals by simply decreasing the gel temperature. Lactose was selected has model substance for crystallization.

Methods

Water solutions with different% of poloxamer 407, α-Lactose monohydrate, and ethanol were prepared and analysed by rheology to understand how the different components alter the gelling temperature. The systems with the required characteristics for lactose crystallization were prepared and the crystals recovered by cooling and then filtering the dispersion.

Results

Rheological analysis showed interaction between the poloxamer and lactose. Increasing the quantity of poloxamer or lactose lowered the gelation temperature while the addition of small amounts of ethanol had a modest effect on the same property. These data were used to identify the ideal concentration of the components in order to prepare a system matching the features of our purpose. Such system yielded high quality crystals, with well-defined geometry and narrow particle size distribution.

Conclusion

Poloxamer is a very interesting polymer in that it is able to generate a reversible gelling medium from which crystals can be harvested by filtering, without the addition of any chemicals to promote the sol–gel transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CI:

Carr index

D50 :

median diameter

DSC:

differential scanning calorimetry

G′:

elastic modulus

G″:

viscous modulus

IQR:

interquartile range

LSS:

lactose stock solutions

PEO:

polyethylene oxide

PPO:

polypropylene oxide

PSS:

poloxamer stock solutions

δ:

phase angle

η*:

complex viscosity

ρb :

bulk density

ρt :

tapped density

REFERENCES

  1. Shekunov BY, York P. Crystallization processes in pharmaceutical technology and drug delivery design. J Crystal Growth. 2000;211:122–36.

    Article  CAS  Google Scholar 

  2. Liesegang RE. Phot Archiv. 1896;21:221.

    Google Scholar 

  3. Arora SK. Advances in gel growth: a review. Prog Crystal Growth Charact. 1981;4:345–78.

    Article  CAS  Google Scholar 

  4. Robert MC, Lefaucheux F. Crystal growth in gels: principle and applications. J Crystal Growth. 1988;90:358–67.

    Article  CAS  Google Scholar 

  5. Zeng XM, Martin GP, Marriott C, Pritchard J. Crystallization of lactose from carbopol gels. Pharm Res. 2000;17:879–86.

    Article  PubMed  CAS  Google Scholar 

  6. Zeng XM, Martin GP, Marriott C, Pritchard J. The use of lactose recrystallised from carbopol gels as a carrier for aerolised salbutamol sulphate. Eur J Pharm Biopharm. 2001;51:55–62.

    Article  CAS  Google Scholar 

  7. Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Aspects. 1995;96:1–46.

    Article  CAS  Google Scholar 

  8. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules. 1994;27:2414–25.

    Article  CAS  Google Scholar 

  9. Linse P. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution. Macromolecules. 1993;26:4437–49.

    Article  CAS  Google Scholar 

  10. Mortensen K, Pedersen JS. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules. 1993;26:805–12.

    Article  CAS  Google Scholar 

  11. Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.

    Article  PubMed  Google Scholar 

  12. Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF. Thermosensitive self-assembling block copolymers as drug delivery systems. Polymers. 2011;3:779–811.

    Article  CAS  Google Scholar 

  13. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28.

    Article  PubMed  CAS  Google Scholar 

  14. BASF Aktiengesellschaft. Poloxamer 407-Thickening agent and gel former for the pharmaceutical industry, 2005, pp. 1–8.

  15. Beddow J, Meloy T. Testing and characterization of powders and fine particles. London: Heyden & Son Ltd; 1980.

    Google Scholar 

  16. Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–8.

    CAS  Google Scholar 

  17. Bonacucina G, Spina M, Misici-Falzi M, Cespi M, Pucciarelli S, Angeletti M, et al. Effect of hydroxypropyl beta-cyclodextrin on the self-assembling and thermogelation properties of Poloxamer 407. Eur J Pharm Sci. 2007;32:115–22.

    Article  PubMed  CAS  Google Scholar 

  18. Bohorquez M, Koch C, Trygstad T, Pandit N. A study of the temperature-dependent micellization of pluronic F127. J Colloid Interface Sci. 1999;216:34–40.

    Article  PubMed  CAS  Google Scholar 

  19. Microcal. OriginPro 8 SR1 manual software, 2007.

  20. Cespi M, Bonacucina G, Mencarelli G, Pucciarelli S, Giorgioni G, Palmieri GF. Monitoring the aggregation behaviour of self-assembling polymers through high-resolution ultrasonic spectroscopy. Int J Pharm. 2010;388:274–9.

    Article  PubMed  CAS  Google Scholar 

  21. Desai PR, Jain NJ, Sharma RK, Bahadur P. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Surf A. 2001;178:57–69.

    Article  CAS  Google Scholar 

  22. Rodriguez-Hornedo N, Murphy D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci. 1999;88:651–60.

    Article  PubMed  CAS  Google Scholar 

  23. Wade A, Weller PJ. Handbook of pharmaceutical excipients. Washington DC: American Pharmaceutical Association; 1994.

    Google Scholar 

  24. Machado JJB, Coutinho JA, Macedo EA. Solid–liquid equilibrium of α-lactose in ethanol/water. Fluid Phase Equilibria. 2000;173:121–34.

    Article  CAS  Google Scholar 

  25. Ford LJ, Timmins P. Pharmaceutical thermal analysis, techniques and application. Chichester: Ellis Horwood Limited; 1989.

    Google Scholar 

  26. Garnier S, Petit S, Mallet F, Petit MN, Lemarchand D, Coste S, et al. Influence of ageing, grinding and preheating on the thermal behaviour of alpha-lactose monohydrate. Int J Pharm. 2008;361:131–40.

    Article  PubMed  CAS  Google Scholar 

  27. Walstra P, Jenness R, Badings HT. Dairy chemistry and physics. New York: Wilkey; 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Filippo Palmieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cespi, M., Bonacucina, G., Casettari, L. et al. Poloxamer Thermogel Systems as Medium for Crystallization. Pharm Res 29, 818–826 (2012). https://doi.org/10.1007/s11095-011-0606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0606-3

KEY WORDS

Navigation