Skip to main content

Advertisement

Log in

Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability and Biocompatibility of Superparamagnetic Iron Oxide Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs).

Methods

Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe3O4 IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe3O4 IONPs (Citrate-IONPs).

Results

CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43°C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all aqueous media tested. No cytotoxicity was observed in a mouse brain endothelial-derived cell line (bEnd.3) exposed to CNA-IONPs up to 10 mg/mL for 30 h. Citrate-IONPs (> 0.05 mg/mL) reduced cell viability after 3 h. CNA-IONPs retained the superparamagnetic properties of entrapped IONPs, enhancing T2-weighted magnetic resonance images (MRI) at 0.02 mg/mL, and generating heat at a mild hyperthermic level (40 ~ 42°C) with an alternating magnetic field (AMF).

Conclusion

Compared to citric acid coating, CNAs with a cross-linked anionic core improved particle stability and biocompatibility of IONPs, which would be beneficial for future MRI and AMF-induced remote hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter. 2010;6:2364–71.

    Article  CAS  Google Scholar 

  2. Frimpong RA, Hilt JZ. Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine. 2010;5:1401–14.

    Article  PubMed  CAS  Google Scholar 

  3. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 2010;70:6303–12.

    Article  PubMed  CAS  Google Scholar 

  4. Muldoon LL, Sandor M, Pinkston KE, Neuwelt EA. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery. 2005;57:785–96.

    Article  PubMed  Google Scholar 

  5. Rock JP, Parsa AT, Rutka JT. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor - comments. Neurosurgery. 2005;57:796.

    Google Scholar 

  6. Krishnan KM. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE T Magn. 2010;46:2523–58.

    Article  CAS  Google Scholar 

  7. Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, Sibov TT, Amaro E, Tannus A, Vidoto ELG, Martins MJ, Santos RS, Gamarra LF. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed. 2011;6:591–603.

    CAS  Google Scholar 

  8. Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today. 2011;14:330–8.

    Article  CAS  Google Scholar 

  9. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cerebr Blood F Met. 2010;30:15–35.

    Article  CAS  Google Scholar 

  10. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 2012;5:173–86.

    Article  PubMed  CAS  Google Scholar 

  11. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: Ex vivo study. Jpn J Cancer Res. 1997;88:630–2.

    Article  PubMed  CAS  Google Scholar 

  12. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63:24–46.

    Article  PubMed  CAS  Google Scholar 

  13. Meenach SA, Anderson KW, Hilt JZ. Synthesis and characterization of thermoresponsive poly(ethylene glycol)-based hydrogels and their magnetic nanocomposites. J Polym Sci Pol Chem. 2010;48:3229–35.

    Article  CAS  Google Scholar 

  14. Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Margottini M, Mondovi B, Moricca G, Rossi-Fanelli A. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer. 1967;20:1351–81.

    Article  PubMed  CAS  Google Scholar 

  15. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011;103:317–24.

    Article  Google Scholar 

  16. Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155:344–57.

    Article  PubMed  CAS  Google Scholar 

  17. Lin MM, Kim Do K, El Haj AJ, Dobson J. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE T Nanobiosci. 2008;7:298–305.

    Article  Google Scholar 

  18. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  PubMed  CAS  Google Scholar 

  19. Farrell D, Majetich SA, Wilcoxon JP. Preparation and characterization of monodisperse Fe nanoparticles. J Phys Chem B. 2003;107:11022–30.

    Article  CAS  Google Scholar 

  20. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  21. Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J. 2010;6:e12.

    Article  PubMed  CAS  Google Scholar 

  22. Novotna B, Jendelova P, Kapcalova M, Rossner P, Turnovcova K, Bagryantseva Y, Babic M, Horak D, Sykova E. Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett. 2012;210:53–63.

    Article  PubMed  CAS  Google Scholar 

  23. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. (2011).

  24. Beduneau A, Ma Z, Grotepas CB, Kabanov A, Rabinow BE, Gong N, Mosley RL, Dou H, Boska MD, Gendelman HE. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS One. 2009;4:e4343.

    Article  PubMed  Google Scholar 

  25. Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotech J. 2011;6:1342–7.

    Article  CAS  Google Scholar 

  26. Rumenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res. 2012;29:1165–79.

    Article  PubMed  Google Scholar 

  27. Qiao RR, Yang CH, Gao MY. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem. 2009;19:6274–93.

    Article  CAS  Google Scholar 

  28. Meenach SA, Hilt JZ, Anderson KW. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater. 2010;6:1039–46.

    Article  PubMed  CAS  Google Scholar 

  29. Wagner M, Wagner S, Schnorr J, Schellenberger E, Kivelitz D, Krug L, Dewey M, Laule M, Hamm B, Taupitz M. Coronary MR angiography using citrate-coated very small superparamagnetic iron oxide particles as blood-pool contrast agent: initial experience in humans. J Magn Reson Imaging. 2011;34:816–23.

    Article  PubMed  Google Scholar 

  30. Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomed. 2007;2:609–22.

    Google Scholar 

  31. Chanteau B, Fresnais J, Berret JF. Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium. Langmuir. 2009;25:9064–70.

    Article  PubMed  CAS  Google Scholar 

  32. Goloverda G, Jackson B, Kidd C, Kolesnichenko V. Synthesis of ultrasmall magnetic iron oxide nanoparticles and study of their colloid and surface chemistry. J Magn Magn Mater. 2009;321:1372–6.

    Article  PubMed  CAS  Google Scholar 

  33. Park Y, Whitaker RD, Nap RJ, Paulsen JL, Mathiyazhagan V, Doerrer LH, Song YQ, Hurlimann MD, Szleifer I, Wong JY. Stability of superparamagnetic iron oxide nanoparticles at different pH values: experimental and theoretical analysis. Langmuir. 2012;28:6246–55.

    Article  PubMed  CAS  Google Scholar 

  34. Hatakeyama M, Kishi H, Kita Y, Imai K, Nishio K, Karasawa S, Masaike Y, Sakamoto S, Sandhu A, Tanimoto A, Gomi T, Kohda E, Abe M, Handa H. A two-step ligand exchange reaction generates highly water-dispersed magnetic nanoparticles for biomedical applications. J Mater Chem. 2011;21:5959–66.

    Article  CAS  Google Scholar 

  35. Lattuada M, Hatton TA. Functionalization of monodisperse magnetic nanoparticles. Langmuir. 2007;23:2158–68.

    Article  PubMed  CAS  Google Scholar 

  36. Guo R, Song Y, Wang GL, Murray RW. Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc. 2005;127:2752–7.

    Article  PubMed  CAS  Google Scholar 

  37. Woehrle GH, Brown LO, Hutchison JE. Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. J Am Chem Soc. 2005;127:2172–83.

    Article  PubMed  CAS  Google Scholar 

  38. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials. 2011;32:9353–63.

    Article  PubMed  CAS  Google Scholar 

  39. Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials. (2012).

  40. Kumagai M, Imai Y, Nakamura T, Yamasaki Y, Sekino M, Ueno S, Hanaoka K, Kikuchi K, Nagano T, Kaneko E, Shimokado K, Kataoka K. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloid Surface B. 2007;56:174–81.

    Article  CAS  Google Scholar 

  41. Kim DH, Rozhkova EA, Rajh T, Bader SD, Novosad V. Synthesis of hybrid gold/iron oxide nanoparticles in block copolymer micelles for imaging, drug delivery, and magnetic hyperthermia. IEEE T Magn. 2009;45:4821–4.

    Article  CAS  Google Scholar 

  42. Euliss LE, Grancharov SG, O'Brien S, Deming TJ, Stucky GD, Murray CB, Held GA. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett. 2003;3:1489–93.

    Article  CAS  Google Scholar 

  43. Berret JF, Schonbeck N, Gazeau F, El Kharrat D, Sandre O, Vacher A, Airiau M. Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc. 2006;128:1755–61.

    Article  PubMed  CAS  Google Scholar 

  44. Kim BS, Qiu JM, Wang JP, Taton TA. Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett. 2005;5:1987–91.

    Article  PubMed  CAS  Google Scholar 

  45. Kim S, Shi YZ, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Del. 2010;7:49–62.

    Article  CAS  Google Scholar 

  46. Lee HJ, Bae Y. Cross-linked nanoassemblies from poly(ethylene glycol)-poly(aspartate) block copolymers as stable supramolecular templates for particulate drug delivery. Biomacromolecules. 2011;12:2686–96.

    Article  PubMed  CAS  Google Scholar 

  47. Scott D, Rohr J, Bae Y. Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity. Int J Nanomed. 2011;6:2757–67.

    Article  CAS  Google Scholar 

  48. Ponta A, Akter S, Bae Y. Degradable cross-linked nanoassemblies as drug carriers for heat shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin. Pharmaceuticals. 2011;4:1281–92.

    Article  CAS  Google Scholar 

  49. Frimpong RA, Dou J, Pechan M, Hilt JZ. Enhancing remote controlled heating characteristics in hydrophilic magnetite nanoparticles via facile co-precipitation. J Magn Magn Mater. 2010;322:326–31.

    Article  CAS  Google Scholar 

  50. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–6.

    Article  PubMed  Google Scholar 

  51. Forrest ML, Yanez JA, Remsberg CM, Ohgami Y, Kwon GS, Davies NM. Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelle nanocarriers: pharmacokinetic disposition, tolerability, and cytotoxicity. Pharm Res. 2008;25:194–206.

    Article  PubMed  CAS  Google Scholar 

  52. Tantra R, Tompkins J, Quincey P. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloid Surface B. 2010;75:275–81.

    Article  CAS  Google Scholar 

  53. Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloid Surface B. 2009;68:83–7.

    Article  CAS  Google Scholar 

  54. Foucaud L, Wilson MR, Brown DM, Stone V. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett. 2007;174:1–9.

    Article  PubMed  CAS  Google Scholar 

  55. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–96.

    Article  CAS  Google Scholar 

  56. Varanda LC, Jafelicci M, Tartaj P, O' Grady K, Gonzalez-Carreno T, Morales MP, Munoz T, Serna CJ. Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere. J Appl Phys. 2002;92:2079–85.

    Article  CAS  Google Scholar 

  57. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  PubMed  CAS  Google Scholar 

  58. Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20:455101–9.

    Article  PubMed  Google Scholar 

  59. Li M, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano. 2010;4:6303–17.

    Article  PubMed  CAS  Google Scholar 

  60. Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 2011;32:2183–93.

    Article  PubMed  CAS  Google Scholar 

  61. Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials. 2012;33:1477–88.

    Article  PubMed  CAS  Google Scholar 

  62. Berry CC, Wells S, Charles S, Curtis AS. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003;24:4551–7.

    Article  PubMed  CAS  Google Scholar 

  63. Soenen SJ, De Cuyper M. Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine. 2010;5:1261–75.

    Article  PubMed  CAS  Google Scholar 

  64. Hu JM, Qian YF, Wang XF, Liu T, Liu SY. Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. Langmuir. 2012;28:2073–82.

    Article  PubMed  CAS  Google Scholar 

  65. Kiyatkin EA, Sharma HS. Permeability of the blood–brain barrier depends on brain temperature. Neuroscience. 2009;161:926–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

MD and DS acknowledge the financial support from a NCI-CNTC (National Cancer Institute Cancer Nanotechnology Training Center) predoctoral and postdoctoral traineeship (NCI 5R25CA153954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsoo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, M., Scott, D.F., Hardy, P.A. et al. Block Copolymer Cross-Linked Nanoassemblies Improve Particle Stability and Biocompatibility of Superparamagnetic Iron Oxide Nanoparticles. Pharm Res 30, 552–561 (2013). https://doi.org/10.1007/s11095-012-0900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0900-8

KEY WORDS

Navigation