Skip to main content
Log in

Relevance of PepT1 in the Intestinal Permeability and Oral Absorption of Cefadroxil

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To determine the contribution of intestinal PepT1 on the permeability and oral absorption of the β-lactam antibiotic drug cefadroxil.

Methods

The effective permeability (P eff ) of cefadroxil was evaluated in wild-type and PepT1 knockout mice following in situ single-pass intestinal perfusions. The plasma concentration-time profiles of cefadroxil were also examined after oral gavage.

Results

The P eff (cm/s) of cefadroxil in wild-type mice was 0.49 × 10−4 in duodenum, 0.80 × 10−4 in jejunum, 0.88 × 10−4 in ileum and 0.064 × 10−4 in colon. The P eff (cm/s) in PepT1 knockout mice was significantly reduced in small intestine, but not in colon, as shown by values of 0.003 × 10−4, 0.090 × 10−4, 0.042 × 10−4 and 0.032 × 10−4, respectively. Jejunal uptake of cefadroxil was saturable (Km = 2–4 mM) and significantly attenuated by the sodium-proton exchange inhibitor 5-(N,N-dimethyl)amiloride. Jejunal permeability of cefadroxil was not affected by L-histidine, glycine, cephalothin, p-aminohippurate or N-methylnicotinamide. In contrast, cefadroxil permeability was significantly reduced by glycylproline, glycylsarcosine, or cephalexin. Finally, PepT1 ablation resulted in 23-fold reductions in peak plasma concentrations and 14-fold reductions in systemic exposure of cefadroxil after oral dosing.

Conclusions

The findings are definitive in demonstrating that PepT1 is the major transporter responsible for the small intestinal permeability of cefadroxil as well as its enhanced oral drug performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Daniel H, Spanier B, Kottra G, Weitz D. From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology. 2006;21:93–102.

    Article  PubMed  CAS  Google Scholar 

  2. Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica. 2008;38:1022–42.

    Article  PubMed  CAS  Google Scholar 

  3. Brandsch M, Knutter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 2008;60:543–85.

    Article  PubMed  CAS  Google Scholar 

  4. Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med. (2013).

  5. Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–6.

    Article  PubMed  CAS  Google Scholar 

  6. Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius 3rd FC. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Physiol. 1999;276:F658–65.

    PubMed  CAS  Google Scholar 

  7. Jappar D, Wu SP, Hu Y, Smith DE. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice. Drug Metab Dispos. 2010;38:1740–6.

    Article  PubMed  CAS  Google Scholar 

  8. Tanrisever B, Santella PJ. Cefadroxil: a review of its antibacterial, pharmacokinetic and therapeutic properties in comparison with cephalexin and cephradine. Drugs. 1986;32 Suppl 3:1–16.

    Article  PubMed  CAS  Google Scholar 

  9. Buck RE, Price KE. Cefadroxil, a new broad-spectrum cephalosporin. Infection. 1980;8 Suppl 5:S532–7.

    Article  Google Scholar 

  10. Tsuji A. Intestinal absorption of β-lactam antibiotics. In: Taylor MD, Amidon GL, editors. Peptide-based drug design. Washington: American Chemical Society; 1995. p. 101–34.

    Google Scholar 

  11. Boll M, Markovich D, Weber W-M, Korte H, Daniel H, Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, β-lactam antibiotics and ACE-inhibitors. Pflügers Arch Eur J Physiol. 1994;429:146–9.

    Article  CAS  Google Scholar 

  12. Sinko PJ, Amidon GL. Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ. Pharm Res. 1988;5:645–50.

    Article  PubMed  CAS  Google Scholar 

  13. Sánchez-Picó A, Peris-Ribvera J-E, Toledano C, Torres-Molina F, Casabó V-G, Martín-Villodre A, et al. Non-linear intestinal absorption kinetics of cefadroxil in the rat. J Pharm Pharmacol. 1989;41:179–85.

    Article  PubMed  Google Scholar 

  14. Wenzel U, Gebert I, Weintraut H, Weber W-M, Clauß W, Daniel H. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PEPT1 and in human intestinal Caco-2 cells. J Pharmacol Exp Ther. 1996;277:831–9.

    PubMed  CAS  Google Scholar 

  15. Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE. Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos. 2007;35:1209–16.

    Article  PubMed  Google Scholar 

  16. Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE. Mechanisms of cefadroxil uptake in the choroid plexus: studies in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther. 2004;308:462–7.

    Article  PubMed  CAS  Google Scholar 

  17. Shen H, Keep RF, Hu Y, Smith DE. PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus. J Pharmacol Exp Ther. 2005;315:1101–8.

    Article  PubMed  CAS  Google Scholar 

  18. Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438:137–42.

    Article  PubMed  CAS  Google Scholar 

  19. Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003;465:1–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ueo H, Motohashi H, Katsura T, Inui K-I. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70:1104–13.

    Article  PubMed  CAS  Google Scholar 

  21. Nakakariya M, Shimada T, Irokawa M, Koibuchi H, Iwanaga T, Yabuuchi H, et al. Predominant contribution of rat organic anion transporting polypeptide-2 (Oatp2) to hepatic uptake of beta-lactam antibiotics. Pharm Res. 2008;25:578–85.

    Article  PubMed  CAS  Google Scholar 

  22. Hu Y, Smith DE, Ma K, Jappar D, Thomas W, Hillgren KM. Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm. 2008;5:1122–30.

    Article  PubMed  CAS  Google Scholar 

  23. Komiya I, Park JY, Kamani A, Ho NFH, Higuchi WI. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int J Pharm. 1980;4:249–62.

    Article  CAS  Google Scholar 

  24. Kou JH, Fleisher D, Amidon GL. Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination. Pharm Res. 1991;8:298–305.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson DA, Amidon GL. Determination of intrinsic membrane transport parameters from perfused intestine experiments: a boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J Theor Biol. 1988;131:93–106.

    Article  PubMed  CAS  Google Scholar 

  26. Fagerholm U, Johansson M, Lennernäs H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13:1336–42.

    Article  PubMed  CAS  Google Scholar 

  27. Lennernäs H. Animal data: the contributions of the Ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007;59:1103–20.

    Article  PubMed  Google Scholar 

  28. Jappar D, Hu Y, Smith DE. Effect of dose escalation on the in vivo oral absorption and disposition of glycylsarcosine in wild-type and Pept1 knockout mice. Drug Metab Dispos. 2011;39:2250–7.

    Article  PubMed  CAS  Google Scholar 

  29. Bretschneider B, Brandsch M, Neubert R. Intestinal transport of β-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res. 1999;16:55–61.

    Article  PubMed  CAS  Google Scholar 

  30. Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem. 1995;270:25672–7.

    Article  PubMed  CAS  Google Scholar 

  31. Terada T, Saito H, Mukai M, Inui K-I. Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol Ren Physiol. 1997;273:F706–11.

    CAS  Google Scholar 

  32. Naruhashi K, Sai Y, Tamai I, Suzuki N, Tsuji A. PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine. Pharm Res. 2002;19:1417–23.

    Article  PubMed  CAS  Google Scholar 

  33. Oulianova N, Cheng D, Huebert N, Chen Y. Human oral drugs absorption is correlated to their in vitro uptake by brush border membrane vesicles. Int J Pharm. 2007;336:115–21.

    Article  PubMed  CAS  Google Scholar 

  34. Lucas M. Determination of acid surface pH in vivo in rat proximal jejunum. Gut. 1983;24:734–9.

    Article  PubMed  CAS  Google Scholar 

  35. Högerle ML, Winne D. Drug absorption by the rat jejunum perfused in situ. dissociation from the pH-partition theory and role of microclimate-pH and unstirred layer. Naunyn-Schmiedeberg’s Arch Pharmacol. 1983;322:249–55.

    Article  Google Scholar 

  36. Dressman J, Butler J, Hempenstall J, Reppas C. The BCS: where do we go from here? Pharm Technol. 2001;25:68–76.

    CAS  Google Scholar 

  37. Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99:4940–54.

    Article  PubMed  CAS  Google Scholar 

  38. La Rosa F, Ripa S, Prenna M, Ghezzi A, Pfeffer M. Pharmacokinetics of cefadroxil after oral administration in humans. Antimicrob Agents Chemother. 1982;21:320–2.

    Article  PubMed  Google Scholar 

  39. Garrigues TM, Martin U, Peris-Ribera JE, Prescott LF. Dose-dependent absorption and elimination of cefadroxil in man. Eur J Clin Pharmacol. 1991;41:179–83.

    Article  PubMed  CAS  Google Scholar 

  40. Ma K, Hu Y, Smith DE. Influence of fed-fasted state on intestinal PEPT1 expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and Pept1 knockout mice. Pharm Res. 2012;29:535–45.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant R01-GM035498] (to D.E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posada, M.M., Smith, D.E. Relevance of PepT1 in the Intestinal Permeability and Oral Absorption of Cefadroxil. Pharm Res 30, 1017–1025 (2013). https://doi.org/10.1007/s11095-012-0937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0937-8

KEY WORDS

Navigation