Skip to main content
Log in

The Optimization of an Intravaginal Ring Releasing Progesterone Using a Mathematical Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Progering® is the only intravaginal ring intended for contraception therapies during lactation. It is made of silicone and releases progesterone through the vaginal walls. However, some drawbacks have been reported in the use of silicone. Therefore, ethylene vinyl acetate copolymer (EVA) was tested in order to replace it.

Methods

EVA rings were produced by a hot-melt extrusion procedure. Swelling and degradation assays of these matrices were conducted in different mixtures of ethanol/water. Solubility and partition coefficient of progesterone were measured, together with the initial hormone load and characteristic dimensions. A mathematical model was used to design an EVA ring that releases the hormone at specific rate.

Results

An EVA ring releasing progesterone in vitro at about 12.05 ± 8.91 mg day−1 was successfully designed. This rate of release is similar to that observed for Progering®. In addition, it was observed that as the initial hormone load or ring dimension increases, the rate of release also increases. Also, the device lifetime was extended with a rise in the initial amount of hormone load.

Conclusions

EVA rings could be designed to release progesterone in vitro at a rate of 12.05 ± 8.91 mg day−1. This ring would be used in contraception therapies during lactation. The use of EVA in this field could have initially several advantages: less initial and residual hormone content in rings, no need for additional steps of curing or crosslinking, less manufacturing time and costs, and the possibility to recycle the used rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Shah B, Surti N, Misra A. 12 - Other routes of protein and peptide delivery: transdermal, topical, uterine, and rectal. In: Ambikanandan M, editor. Challenges in delivery of therapeutic genomics and proteomics. London: Elsevier; 2011. p. 623–71.

    Chapter  Google Scholar 

  2. Richardson JL, Illum L. (D) Routes of delivery: Case studies: (8) The vaginal route of peptide and protein drug delivery. Adv Drug Deliv Rev. 1992;8(2–3):341–66.

    Article  CAS  Google Scholar 

  3. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103(2):301–13.

    Article  CAS  PubMed  Google Scholar 

  4. das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1–2):1–14.

    Article  PubMed  Google Scholar 

  5. Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today. 2000;3(10):359–64.

    Article  CAS  PubMed  Google Scholar 

  6. Woolfson AD, Elliott GRE, Gilligan CA, Passmore CM. Design of an intravaginal ring for the controlled delivery of 17β-estradiol as its 3-acetate ester. J Control Release. 1999;61:319–28.

    Article  CAS  PubMed  Google Scholar 

  7. Morrow RJ, Woolfson AD, Donnelly L, Curran R, Andrews G, Katinger D, et al. Sustained release of proteins from a modified vaginal ring device. Eur J Pharm Biopharm. 2011;77(1):3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Helbling IM, Cabrera MI, Luna JA. Mathematical modeling of drug delivery from one-layer and two-layer torus-shaped devices with external mass transfer resistance. Eur J Pharm Sci. 2011;44:288–98.

    Article  CAS  PubMed  Google Scholar 

  9. Helbling IM, Ibarra JCD, Luna JA. Application of the refined integral method in the mathematical modeling of drug delivery from one-layer torus-shaped devices. Int J Pharm. 2012;423:240–6.

    Article  CAS  PubMed  Google Scholar 

  10. Helbling IM, Luna JA, Cabrera MI. Mathematical modeling of drug delivery from torus-shaped single-layer devices. J Control Release. 2011;149:258–63.

    Article  CAS  PubMed  Google Scholar 

  11. Greemblatt RB. The physiologic effectiveness of progesterone vaginal suppositories. J Clin Endocrinol Metab. 1954;14(12):1564–7.

    Article  Google Scholar 

  12. Widholm O, Vartiainen E. The absorption of conjugated estrogens and sodium estrone sulfate from the vagina. Ann Chir Gynecol Fenn. 1974;63:186–90.

    CAS  Google Scholar 

  13. Roumen FJME, Dieben TOM. Clinical acceptability of an ethylene-vinyl-acetate nonmedicated vaginal ring. Contraception. 1999;59(1):59–62.

    Article  CAS  PubMed  Google Scholar 

  14. Sivin I, Mishell DR, Victor A, Diaz S, Alvarez-Sanchez F, Nielsen NC, et al. A multicenter study of levonorgestrel—estradiol contraceptive vaginal rings II—subjective and objective measures of effects: an international comparative trial. Contraception. 1981;24(4):359–76.

    Article  CAS  PubMed  Google Scholar 

  15. Abbasi F, Mirzadeh H, Katbab A-A. Modification of polysiloxane polymers for biomedical applications: a review. Polym Int. 2001;50(12):1279–87.

    Article  CAS  Google Scholar 

  16. Nikolaev OO, Urhanovl VB, Pavlovich V, Babaev AD, Bogdanov VV, Mirzadeh H. A thermoplastic rubber composition for medical purposes. Iran Polym J. 2001;10:9–14.

    CAS  Google Scholar 

  17. Robb WL. Thin silicone membranes—their permeation properties and some applications. Ann N Y Acad Sci. 1968;146(1):119–37.

    Article  CAS  PubMed  Google Scholar 

  18. Bates BL, Ragheb AO, Stewart JM, Bourdeau WJ, Choules BD, Purdy JD, et al, inventors; Coated implantable medical device. 2005.

  19. Heredia V, Bianco ID, Tríbulo H, Cuesta G, Chesta P, Bó GA, et al. Room temperature vulcanizing silicone sheaths on a reusable support for progesterone delivery in estrous synchronization treatments in cattle. Anim Reprod Sci. 2008;108(3–4):356–63.

    Article  CAS  PubMed  Google Scholar 

  20. van Laarhoven JAH, Kruft MAB, Vromans H. In vitro release properties of etonogestrel and ethinyl estradiol from a contraceptive vaginal ring. Int J Pharm. 2002;232(1–2):163–73.

    Article  PubMed  Google Scholar 

  21. Novák A, de la Loge C, Abetz L, van der Meulen EA. The combined contraceptive vaginal ring, NuvaRing®: an international study of user acceptability. Contraception. 2003;67(3):187–94.

    Article  PubMed  Google Scholar 

  22. Kolacki C, Rocco V. The combined vaginal contraceptive ring, NuvaRing, and cerebral venous sinus thrombosis: a case report and review of the literature. J Emerg Med. 2012;42(4):413–6.

    Article  PubMed  Google Scholar 

  23. Ahrendt H-J, Nisand I, Bastianelli C, Gómez MA, Gemzell-Danielsson K, Urdl W, et al. Efficacy, acceptability and tolerability of the combined contraceptive ring, NuvaRing, compared with an oral contraceptive containing 30 μg of ethinyl estradiol and 3 mg of drospirenone. Contraception. 2006;74(6):451–7.

    Article  CAS  PubMed  Google Scholar 

  24. Oddsson K, Leifels-Fischer B, de Melo NR, Wiel-Masson D, Benedetto C, Verhoeven CHJ, et al. Efficacy and safety of a contraceptive vaginal ring (NuvaRing) compared with a combined oral contraceptive: a 1-year randomized trial. Contraception. 2005;71(3):176–82.

    Article  CAS  PubMed  Google Scholar 

  25. Nash HA, Alvarez-Sanchez F, Mishell Jr DR, Fraser IS, Maruo T, Harmon TM. Estradiol-delivering vaginal rings for hormone replacement therapy. Am J Obstet Gynecol. 1999;181(6):1400–6.

    Article  CAS  PubMed  Google Scholar 

  26. Nash HA, Brache V, Alvarez-Sanchez F, Jackanicz TM, Harmon TM. Estradiol delivery by vaginal rings: potential for hormone replacement therapy. Maturitas. 1997;26(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  27. Malcolm RK, Edwards K-L, Kiser P, Romano J, Smith TJ. Advances in microbicide vaginal rings. Antivir Res. 2010;88(Supplement(0)):S30–9.

    Article  CAS  PubMed  Google Scholar 

  28. Han YA, Singh M, Saxena BB. Development of vaginal rings for sustained release of nonhormonal contraceptives and anti-HIV agents. Contraception. 2007;76(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  29. Brache V, Faundes A. Contraceptive vaginal rings: a review. Contraception. 2010;82(5):418–27.

    Article  CAS  PubMed  Google Scholar 

  30. Brache V, Sitruk-Ware R, Williams A, Blithe D, Croxatto H, Kumar N, et al. Effects of a novel estrogen-free, progesterone receptor modulator contraceptive vaginal ring on inhibition of ovulation, bleeding patterns and endometrium in normal women. Contraception. 2012;85(5):480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johansson EDB, Sitruk-Ware R. New delivery systems in contraception: vaginal rings. Am J Obstet Gynecol. 2004;190(4, Supplement):S54–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kerns J, Darney P. Vaginal ring contraception. Contraception. 2011;83(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  33. Landgren BM, Aedo AR, Johannisson E, Cekan SZ. Studies on a vaginal ring releasing levonorgestrel at an initial rate of 27 μg/24h when used alone or in combination with transdermal systems releasing estradiol. Contraception. 1994;50(1):87–100.

    Article  CAS  PubMed  Google Scholar 

  34. Rad M, Kluft C, Ménard J, Burggraaf J, de Kam ML, Meijer P, et al. Comparative effects of a contraceptive vaginal ring delivering a nonandrogenic progestin and continuous ethinyl estradiol and a combined oral contraceptive containing levonorgestrel on hemostasis variables. Am J Obstet Gynecol. 2006;195(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  35. Roumen FJME. The contraceptive vaginal ring compared with the combined oral contraceptive pill: a comprehensive review of randomized controlled trials. Contraception. 2007;75(6):420–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sivin I, Díaz S, Croxatto HB, Miranda P, Shaaban M, Sayed EH, et al. Contraceptives for lactating women: A comparative trial of a progesterone-releasing vaginal ring and the Copper T 380A IUD. Contraception. 1997;55(4):225–32.

    Article  CAS  PubMed  Google Scholar 

  37. Terrell LR, Tanner AE, Hensel DJ, Blythe MJ, Fortenberry JD. Acceptability of the vaginal contraceptive ring among adolescent women. J Pediatr Adolesc Gynecol. 2011;24(4):204–10.

    Article  PubMed  Google Scholar 

  38. Weisberg E, Fraser IS, Lacarra M, Mishell Jr DR, Jackanicz T. Effect of different insertion regimens on side effects with a combination contraceptive vaginal ring. Contraception. 1997;56(4):233–9.

    Article  CAS  PubMed  Google Scholar 

  39. Díaz S, Zepeda A, Maturana X, Reyes MV, Miranda P, Casado ME, et al. Fertility regulation in nursing women: IX. Contraceptive performance, duration of lactation, infant growth, and bleeding patterns during use of progesterone vaginal rings, progestin-only pills, Norplant® implants, and Copper T 380-A intrauterine devices. Contraception. 1997;56(4):223–32.

    Article  PubMed  Google Scholar 

  40. Massai R, Miranda P, Valdés P, Lavı́n P, Zepeda A, Casado ME, et al. Preregistration study on the safety and contraceptive efficacy of a progesterone-releasing vaginal ring in Chilean nursing women. Contraception. 1999;60(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  41. Nath A, Sitruk-Ware R. Progesterone vaginal ring for contraceptive use during lactation. Contraception. 2010;82(5):428–34.

    Article  CAS  PubMed  Google Scholar 

  42. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43.

    Article  CAS  PubMed  Google Scholar 

  43. Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012;161(2):351–62.

    Article  CAS  PubMed  Google Scholar 

  44. Moharram AK, Shefee T. Role of mathematical modeling in controlled drug delivery. J Sci Res. 2009;1:539–50.

    Google Scholar 

  45. Chien YW, Lambert HJ, Grant DE. Controlled drug release from polymeric devices I: technique for rapid in vitro release studies. J Pharm Sci. 1974;63(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  46. Matlin SA, Belenguer A, Hall PE. Progesterone-releasing vaginal rings for use in postpartum contraception. I. In vitro release rates of progesterone from core-loaded rings. Contraception. 1992;45(4):329–41.

    Article  CAS  PubMed  Google Scholar 

  47. Jackanicz TM. Levonorgestrel and estradiol release from an improved contraceptive vaginal ring. Contraception. 1981;24(4):323–39.

    Article  CAS  PubMed  Google Scholar 

  48. International A. ASTM D570, Standard test method for water absorption of plastics. West Conshohocken, PA. 1998.

  49. Tang M, Hou J, Lei L, Liu X, Guo S, Wang Z, et al. Preparation, characterization and properties of partially hydrolyzed ethylene vinyl acetate copolymer films for controlled drug release. Int J Pharm. 2010;400:66–73.

    Article  CAS  PubMed  Google Scholar 

  50. Pereira GR, Marchetti JM, Bentley MVLB. A rapid method for determination of progesterone by reversed-phase liquid chromatography from aqueous media. Anal Lett. 2000;33:881–9.

    Article  CAS  Google Scholar 

  51. Wenhui D. Mechanism of diffusion of progesterone through ethylene vinyl acetate copolymer. J China Pharmaceut Univ. 1987;18:87–90.

    Google Scholar 

  52. Malcolm K, Woolfson D, Russell J, Tallon P, McAuley L, Craig D. Influence of silicone elastomer solubility and diffusivity on the in vitro release of drugs from intravaginal rings. J Control Release. 2003;90:217–25.

    Article  CAS  PubMed  Google Scholar 

  53. Russell JA, Malcolm RK, Campbell K, Woolfson AD. High-performance liquid chromatographic determination of 17β-estradiol and 17β-estradiol-3-acetate solubilities and diffusion coefficients in silicone elastomeric intravaginal rings. J Chromatogr B. 2000;744:157–63.

    Article  CAS  Google Scholar 

  54. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  55. Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  56. Pillay V, Fassihi R. Evaluation and comparison of dissolution data derived from different modified release dosage forms: an alternative method. J Control Release. 1998;55:45–55.

    Article  CAS  PubMed  Google Scholar 

  57. Chien YW. Fundamentals of controlled-release drug administration. Swarbrick J, editor. New York: Marcel Dekker Inc; 1982.

    Google Scholar 

  58. Bunt CR, Rathbone MJ, Burggraaf S, C.R. O, editors. Development of a QC release assessment method for a physically large veterinary product containing a highly water insoluble drug and the effect of formulation variables upon release. Proceed International Symp Control Rel Bioact Mater; 1997.

  59. Nandi I, Bateson M, Bari M, Joshi HN. Synergistic effect of PEG-400 and Cyclodextrin to enhance solubility of Progesterone. AAPS Pharm Sci Technol. 2003;4:1–5.

    Article  Google Scholar 

  60. Papadokostaki KG, Petropoulos JH. Kinetics of release of a model disperse dye from supersaturated cellulose acetate matrices. J Control Release. 1998;54(3):251–64.

    Article  CAS  PubMed  Google Scholar 

  61. Bird RB, Stewart WE, Lightfoot EN. Fenómenos de transporte: un estudio sistemático de los fundamentos del transporte de materia, energía y cantidad de movimiento. Barcelona: Ed. Reverté; 1995.

    Google Scholar 

  62. Mazan J, Leclerc B, Porte H, Torres G, Couarraze G. Influence of network characterisitics on diffusion in silicone elastomer. J Mater Sci Mater Med. 1993;4(2):175–8.

    Article  CAS  Google Scholar 

  63. Helbling IM, Ibarra JCD, Luna JA, Cabrera MI, Grau RJA. Modeling of dispersed-drug delivery from planar polymeric systems: optimizing analytical solutions. Int J Pharm. 2010;400(1–2):131–7.

    Article  CAS  PubMed  Google Scholar 

  64. Helbling IM, Ibarra JCD, Luna JA, Cabrera MI, Grau RJA. Modeling of drug delivery from erodible and non-erodible laminated planar devices into a finite external medium. J Membr Sci. 2010;350(1–2):10–8.

    Article  CAS  Google Scholar 

  65. Brache V, Payán LJ, Faundes A. Current status of contraceptive vaginal rings. Contraception. 2013;87(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  66. Narasimhan B, Langer R. Zero-order release of micro- and macromolecules from polymeric devices: the role of the burst effect. J Control Release. 1997;47(1):13–20.

    Article  CAS  Google Scholar 

  67. Sheikh Hassan A, Sapin A, Lamprecht A, Emond E, El Ghazouani F, Maincent P. Composite microparticles with in vivo reduction of the burst release effect. Eur J Pharm Biopharm. 2009;73(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  68. Xiang A, McHugh AJ. Quantifying sustained release kinetics from a polymer matrix including burst effects. J Membr Sci. 2011;371(1–2):211–8.

    Article  CAS  Google Scholar 

  69. Alexander NJ, Arkin ES, Einhaus KB, Singh M, Thompson MM. Results of a patient acceptance survey administered to women in the NuvaRing Premier Program. Obstet Gynecol. 2003;101(4, Supplement):S16–7.

    Article  Google Scholar 

  70. Fine PM, Meyers N, Tryggestad J. Patient satisfaction with the use of nuvaring after surgical or medical abortion. Contraception. 2005;72(3):232.

    Article  Google Scholar 

  71. Liu KE, Alhajri M, Greenblatt E. A randomized controlled trial of NuvaRing versus combined oral contraceptive pills for pretreatment in in vitro fertilization cycles. Fertil Steril. 2011;96(3):605–8.

    Article  CAS  PubMed  Google Scholar 

  72. Mulders TMT, Dieben TOM. Use of the novel combined contraceptive vaginal ring NuvaRing for ovulation inhibition. Fertil Steril. 2001;75(5):865–70.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors wish to express their gratitude to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and to Universidad Nacional del Litoral (UNL) of Argentina, for the financial support granted to this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio M. Helbling.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbling, I.M., Ibarra, J.C.D. & Luna, J.A. The Optimization of an Intravaginal Ring Releasing Progesterone Using a Mathematical Model. Pharm Res 31, 795–808 (2014). https://doi.org/10.1007/s11095-013-1201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1201-6

KEY WORDS

Navigation