Skip to main content

Advertisement

Log in

Co-delivery of Sildenafil (Viagra®) and Crizotinib for Synergistic and Improved Anti-tumoral Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cancer multi-drug resistance is a major issue associated with current anti-tumoral therapeutics. In this work, Crizotinib an anti-tumoral drug approved for the treatment of non-small lung cancer in humans, and Sildenafil (Viagra®), were loaded into micellar carriers to evaluate the establishment of a possible synergistic anti-tumoral effect in breast cancer cells.

Methods

Micellar carriers comprised by PEG-PLA block co-polymers were formulated by the solvent displacement method in which the simultaneous encapsulation of Crizotinib and Sildenafil was promoted. Encapsulation efficiency was analyzed by a new UPLC method validated for this combination of compounds. Micelle physicochemical characterization and cellular uptake were characterized by light scattering and confocal microscopy. The bio- and hemocompatibility of the carriers was also evaluated. MCF-7 breast cancer cells were used to investigate the synergistic anti-tumoral effect.

Results

Our results demonstrate that this particular combination induces massive apoptosis of breast cancer cells. The co-delivery of Crizotinib and Sildenafil was only possible due to the high encapsulation efficiency of the micellar systems (>70%). The micelles with size ranging between 93 and 127 nm were internalized by breast cancer cells and subsequently released their payload in the intracellular compartment. The results obtained demonstrated that the delivery of both drugs by micellar carriers led to a 2.7 fold increase in the anti-tumoral effect, when using only half of the concentration that is required when free drugs are administered.

Conclusions

Altogether, co-delivery promoted a synergistic effect and demonstrated for the first time the potential of PEG-PLA-Crizotinib-Sildenafil combination for application in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJL, et al. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet. 2011;378:1461–84.

    Article  PubMed  Google Scholar 

  4. Bhumbra R, Carter S, Jeys L, Tillman R, Abudu A, Sumathi V, et al. How does a poor response to chemotherapy affect outcomes in patients with osteosarcoma? J Bone Joint Surg (Br). 2012;94:38.

    Google Scholar 

  5. Liu R, Gilmore DM, Zubris KA, Xu X, Catalano PJ, Padera RF, et al. Prevention of nodal metastases in breast cancer following the lymphatic migration of paclitaxel-loaded expansile nanoparticles. Biomaterials. 2013;34:1810–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol. 2002;20:1456–66.

    Article  PubMed  CAS  Google Scholar 

  7. Chen J, Wang L, Yao Q, Ling R, Li K, Wang H. Drug concentrations in axillary lymph nodes after lymphatic chemotherapy on patients with breast cancer. Breast Cancer Res. 2004;6:474–7.

    Article  Google Scholar 

  8. Saha RN, Vasanthakumar S, Bende G, Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol. 2010;27:215–31.

    Article  PubMed  CAS  Google Scholar 

  9. Lila ASA, Eldin NE, Ichihara M, Ishida T, Kiwada H. Multiple administration of PEG-coated liposomal oxaliplatin enhances its therapeutic efficacy: a possible mechanism and the potential for clinical application. Int J Pharm. 2012;438:176–83.

    Article  PubMed  Google Scholar 

  10. Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006;61:1027–40.

    Article  CAS  Google Scholar 

  11. Rösler A, Vandermeulen GW, Klok H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2012;53:95–108.

    Article  Google Scholar 

  12. Letchfordand K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65:259–69.

    Article  Google Scholar 

  13. Garay-Jimenez JC, Young A, Gergeres D, Greenhalgh K, Turos E. Methods for purifying and detoxifying sodium dodecyl sulfate–stabilized polyacrylate nanoparticles. Nanomedicine: NBM. 2008;4:98–105.

    Article  CAS  Google Scholar 

  14. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: NBM. 2012;8:147–66.

    Article  CAS  Google Scholar 

  15. Xiao L, Xiong X, Sun X, Zhu Y, Yang H, Chen H, et al. Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials. 2011;32:5148–57.

    Article  PubMed  CAS  Google Scholar 

  16. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of Trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:719–26.

    Article  PubMed  CAS  Google Scholar 

  17. Yezhelyev M, Gao X, Xing Y, Alhajj A, Nie S, Oregan R. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7:657–67.

    Article  PubMed  CAS  Google Scholar 

  18. Drucker L, Afensiev F, Radnay J, Shapira H, Lishner M. Co-administration of simvastatin and cytotoxic drugs is advantageous in myeloma cell lines. Anticancer Drugs. 2004;15:79–84.

    Article  PubMed  CAS  Google Scholar 

  19. Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis. 2001;22:1111–7.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang L, Radovic‐Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, et al. Co‐delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. ChemMedChem. 2007;2:1268–71.

    Article  PubMed  CAS  Google Scholar 

  21. Lee AL, Wang Y, Cheng HY, Pervaiz S, Yang YY. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials. 2009;30:919–27.

    Article  PubMed  CAS  Google Scholar 

  22. Shaw AT, Yasothan U, Kirkpatrick P. Crizotinib. Nat Rev Drug Discov. 2011;10:897–8.

    Article  PubMed  CAS  Google Scholar 

  23. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 2007;67:4408–17.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou WJ, Zhang X, Cheng C, Wang F, Wang XK, Liang YJ, et al. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol. 2012;166:1669–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Casaluce F, Sgambato A, Maione P, Ciardiello F, Gridelli C. Emerging mitotic inhibitors for non-small cell carcinoma. Expert Opin Emerg Drugs. 2013;18:97–107.

    Article  PubMed  CAS  Google Scholar 

  26. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem. 2007;296:85–95.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, et al. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials. 2005;26:2121–8.

    Article  PubMed  CAS  Google Scholar 

  28. Li F, Li S, El Ghzaoui A, Nouailhas H, Zhuo R. Synthesis and gelation properties of PEG–PLA–PEG triblock copolymers obtained by coupling monohydroxylated PEG–PLA with adipoyl chloride. Langmuir. 2007;23:2778–83.

    Article  PubMed  CAS  Google Scholar 

  29. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109:169–88.

    Article  PubMed  CAS  Google Scholar 

  30. Layekand B, Singh J. Amino acid grafted chitosan for high performance gene delivery: comparison of amino acid hydrophobicity on vector and polyplex characteristics. Biomacromolecules. 2013;14:485–94.

    Article  Google Scholar 

  31. Akgül B, Lin K-W, Yang H-MO, Chen Y-H, Lu T-H, Chen C-H, et al. Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis. PLoS One. 2010;5:e15358.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pistos C, Papoutsis I, Dona A, Stefanidou M, Athanaselis S, Maravelias C, et al. Off-line HPLC method combined to LC-MS for the determination of sildenafil and its active metabolite in post-mortem human blood according to confirmation criteria. Forensic Sci Int. 2008;178:192–8.

    Article  PubMed  CAS  Google Scholar 

  33. Gaspar VM, Correia IJ, Sousa Â, Silva F, Paquete CM, Queiroz JA, et al. Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. J Control Release. 2011;156:212–22.

    Article  PubMed  CAS  Google Scholar 

  34. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66:10269–73.

    Article  PubMed  CAS  Google Scholar 

  35. Owen SC, Chan DP, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7:53–65.

    Article  CAS  Google Scholar 

  36. Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.

    Article  PubMed  CAS  Google Scholar 

  37. He G, Ma LL, Pan J, Venkatraman S. ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and “stealth” particle characteristics. Int J Pharm. 2007;334:48–55.

    Article  PubMed  CAS  Google Scholar 

  38. Fordeand PM, Rudin CM. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother. 2012;13:1195–201.

    Article  Google Scholar 

  39. Yallapu MM, Ebeling MC, Jaggi M, Chauhan SC. Plasma proteins interaction with curcumin nanoparticles: implications in cancer therapeutics. Curr Drug Metab. 2013;14:504–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Pungkham H, Swatdipakdi N, Theerasilp M, Karnkla S, Chittchang M, Ploypradith P, et al. PEG-b-PCL and PEG-b-PLA polymeric micelles as nanocarrieres for lamellarin N delivery. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE2011. 2011;3245–8

  41. Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release. 2010;143:136–42.

    Article  PubMed  CAS  Google Scholar 

  42. Shi Z, Tiwari AK, Patel AS, Fu L-W, Chen Z-S. Roles of sildenafil in enhancing drug sensitivity in cancer. Cancer Res. 2011;71:3735–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Vila A, Gill H, McCallion O, Alonso MJ. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release. 2004;98:231–44.

    Article  PubMed  CAS  Google Scholar 

  44. Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  PubMed  CAS  Google Scholar 

  45. Asadi H, Rostamizadeh K, Salari D, Hamidi M. Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul. 2011;28:406–16.

    Article  PubMed  CAS  Google Scholar 

  46. Gref R, Quellec P, Sanchez A, Calvo P, Dellacherie E, Alonso MJ. Development and characterization of CyA-loaded poly(lactic acid)–poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur J Pharm Biopharm. 2001;51:111–8.

    Article  PubMed  CAS  Google Scholar 

  47. Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, et al. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci. 2012;126:469–77.

    Article  PubMed  CAS  Google Scholar 

  48. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  PubMed  CAS  Google Scholar 

  49. Jie P, Venkatraman SS, Min F, Freddy BYC, Huat GL. Micelle-like nanoparticles of star-branched PEO–PLA copolymers as chemotherapeutic carrier. J Control Release. 2005;110:20–33.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang H, Xia H, Wang J, Li Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release. 2009;139:31–9.

    Article  PubMed  CAS  Google Scholar 

  51. Ayano E, Karaki M, Ishihara T, Kanazawa H, Okano T. Poly (N-isopropylacrylamide)–PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake. Colloids Surf B: Biointerfaces. 2012;99:67–73.

    Article  PubMed  CAS  Google Scholar 

  52. Das A, Durrant D, Mitchell C, Mayton E, Hoke NN, Salloum FN, et al. Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci. 2010;107:18202–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release. 2009;134:55–61.

    Article  PubMed  CAS  Google Scholar 

  54. Gao MQ, Kim BG, Kang S, Choi YP, Park H, Kang KS, et al. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J Cell Sci. 2010;123:3507–14.

    Article  PubMed  CAS  Google Scholar 

  55. Chen JJ, Sun YL, Tiwari AK, Xiao ZJ, Sodani K, Yang DH, et al. PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter. Cancer Res. 2012;103:1531–7.

    CAS  Google Scholar 

  56. Stege A, Priebsch A, Nieth C, Lage H. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther. 2004;11:699–706.

    Article  PubMed  CAS  Google Scholar 

  57. Camidge D, Bang Y, Kwak E, Shaw A, Iafrate A, Maki R, et al. Progression-free survival (PFS) from a phase I study of crizotinib (PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2011;29:2501.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank to Eng. Ana Paula for the acquisition of SEM images. This work was supported by the Portuguese Foundation for Science and Technology (FCT), (PTDC/EME-TME/103375/2008, PTDC/EBB-BIO/114320/2009, PEst-C/SAU/UI0709/2011). Vítor M. Gaspar, acknowledges a PhD fellowship from FCT (SFRH/BD/80402/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilídio J. Correia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, J.G., Gaspar, V.M., Markl, D. et al. Co-delivery of Sildenafil (Viagra®) and Crizotinib for Synergistic and Improved Anti-tumoral Therapy. Pharm Res 31, 2516–2528 (2014). https://doi.org/10.1007/s11095-014-1347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1347-x

KEY WORDS

Navigation