Skip to main content

Advertisement

Log in

Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Boron neutron capture therapy (BNCT) is a promising cancer therapy modality that utilizes the nuclear capture reaction of epithermal neutrons by boron-10 resulting in a localized nuclear fission reaction and subsequent cell death. Since cellular destruction is limited to approximately the diameter of a single cell, primarily only cells in the neutron field with significant boron accumulation will be damaged. However, the emergence of BNCT as a prominent therapy has in large part been hindered by a paucity of tumor selective boron containing agents. While L-boronophenylalanine and sodium borocaptate are the most commonly investigated clinical agents, new agents are desperately needed due to their suboptimal tumor selectivity. This review will highlight the various strategies to improve tumor boron delivery including: nucleoside and carbohydrate analogs, unnatural amino acids, porphyrins, antibody-dendrimer conjugates, cationic polymers, cell-membrane penetrating peptides, liposomes and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

10B:

Boron-10

18F-BPA:

4-borono-2-18F-fluoro-phenylalanine

BBB:

Blood–brain barrier

BNCT:

Boron neutron capture therapy

CPP:

Cell-membrane penetrating peptide

DNA:

Deoxyribonucleic Acid

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced Permeability and Retention effect

157Gd:

Gadolinium-157

GdNCT:

Gadolinium neutron capture therapy

GBM:

Glioblastoma multiforme

ABCPC:

1-amino-3-boronocyclopentanecarboxylic acid

BPA:

L-boronophenylalanine

BSH:

Sodium borocaptate

H2PzCOB:

1-methyl-o-closocarboranyl-2-hexylthioporphyrazine

i.v.:

Intravenous

L-DOPA:

L-3,4-dihydroxyphenylalanine

LCOB:

o-closocarboranyl β-lactoside

mAbs:

Monoclonal antibodies

NPs:

Nanoparticles

PET:

Positron Emission Tomography

RES:

Reticuloendothelial system (RES)

H2TCP:

Tetra-(4-nido-carboranylphenyl) porphyrin

T/B:

Tumor/blood

T/N:

Tumor/normal tissue

References

  1. Hawthorne MF, Lee M. A critical assessment of boron target compounds for boron neutron capture therapy. J Neurooncol. 2003;62(1–2):33–45.

    PubMed  Google Scholar 

  2. Hosmane NS. Boron and gadolinium neutron capture therapy for cancer treatment. Singapore: World Scientific Publishing Co; 2012.

    Book  Google Scholar 

  3. Hosmane NS. Boron science: new technologies and applications. Boca Raton: CRC Press; 2012.

    Google Scholar 

  4. Azab AK, Abu Ali H, Srebnik M. Chapter 5 Boron neutron capture therapy. In: Hijazi Abu Ali VMD, Morris S, editors. Studies in Inorganic Chemistry: Elsevier; 2006. p. 337–66.

  5. Wittig A, Collette L, Moss R, Sauerwein WA. Early clinical trial concept for boron neutron capture therapy: a critical assessment of the EORTC trial 11001. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8):S59–62.

    Article  CAS  Google Scholar 

  6. Barth RF, Coderre JA, Vicente MGH, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11(11):3987–4002.

    Article  CAS  PubMed  Google Scholar 

  7. Goorley T, Zamenhof R, Nikjoo H. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom. Int J Radiat Biol. 2004;80(11–12):933–40.

    Article  CAS  PubMed  Google Scholar 

  8. Mitin VN, Kulakov VN, Khokhlov VF, Sheino IN, Arnopolskaya AM, Kozlovskaya NG, et al. Comparison of BNCT and GdNCT efficacy in treatment of canine cancer. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8):S299–301.

    Article  CAS  Google Scholar 

  9. Pisarev MA, Dagrosa MA, Juvenal GJ. Boron neutron capture therapy in cancer: past, present and future. Arq Bras Endocrinol Metabol. 2007;51(5):852–6.

    Article  PubMed  Google Scholar 

  10. Barth RF, Vicente MG, Harling OK, Kiger 3rd WS, Riley KJ, Binns PJ, et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol. 2012;7(146):7–146.

    Google Scholar 

  11. Soloway AH, Tjarks W, Barnum BA, Rong F-G, Barth RF, Codogni IM, et al. The chemistry of neutron capture therapy. Chem Rev. 1998;98(4):1515–62.

    Article  CAS  PubMed  Google Scholar 

  12. Liberman SJ, Dagrosa A, Jimenez Rebagliati RA, Bonomi MR, Roth BM, Turjanski L, et al. Biodistribution studies of boronophenylalanine-fructose in melanoma and brain tumor patients in Argentina. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2004;61(5):1095–100.

    Article  CAS  Google Scholar 

  13. Bergenheim AT, Capala J, Roslin M, Henriksson R. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J Neurooncol. 2005;71(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  14. Kankaanranta L, Seppala T, Koivunoro H, Valimaki P, Beule A, Collan J, et al. L-boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: a phase I study. Int J Radiat Oncol Biol Phys. 2011;80(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  15. Pellettieri L, H-Stenstam B, Rezaei A, Giusti V, Sköld K. An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol Scand. 2008;117(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  16. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  17. Henriksson R, Capala J, Michanek A, Lindahl SA, Salford LG, Franzen L, et al. Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol. 2008;88(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  18. Skold K, HS B, Diaz AZ, Giusti V, Pellettieri L, Hopewell JW. Boron neutron capture therapy for glioblastoma multiforme: advantage of prolonged infusion of BPA-f. Acta Neurol Scand. 2010;122(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  19. Diaz A. Assessment of the results from the phase I/II boron neutron capture therapy trials at the Brookhaven national laboratory from a clinician’s point of view. J Neurooncol. 2003;62(1–2):101–9.

    PubMed  Google Scholar 

  20. Neumann M, Bergmann M, Gabel D. Cell type selective accumulation of mercaptoundecahydro- closo-dodecaborate (BSH) in glioblastoma multiforme. Acta Neurochir. 2003;145(11):971–5.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto T, Matsumura A, Nakai K, Shibata Y, Endo K, Sakurai F, et al. Current clinical results of the Tsukuba BNCT trial. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2004;61(5):1089–93.

    Article  CAS  Google Scholar 

  22. Miyatake S, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y, et al. Survival benefit of boron neutron capture therapy for recurrent malignant gliomas. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8 Suppl):S22–4.

    Article  CAS  Google Scholar 

  23. Kawabata S, Miyatake S, Nonoguchi N, Hiramatsu R, Iida K, Miyata S, et al. Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8 Suppl):S15–8.

    Article  CAS  Google Scholar 

  24. Gonzalez SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menendez P, et al. First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2004;61(5):1101–5.

    Article  CAS  Google Scholar 

  25. Pozzi EC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, et al. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys. 2012;51(3):331–9.

    Article  PubMed  Google Scholar 

  26. Garabalino M, Monti Hughes A, Molinari A, Heber E, Pozzi EC, Cardoso J, et al. Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model. Radiat Environ Biophys. 2011;50(1):199–207.

    Article  CAS  PubMed  Google Scholar 

  27. Pozzi EC, Trivillin VA, Colombo LL, Monti Hughes A, Thorp SI, Cardoso JE, et al. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats. Radiat Environ Biophys. 2013;52(4):481–91.

    Article  CAS  PubMed  Google Scholar 

  28. Wittig A, Malago M, Collette L, Huiskamp R, Buhrmann S, Nievaart V, et al. Uptake of two 10B-compounds in liver metastases of colorectal adenocarcinoma for extracorporeal irradiation with boron neutron capture therapy (EORTC Trial 11001). Int J Cancer J Int Du Cancer. 2008;122(5):1164–71.

    Article  CAS  Google Scholar 

  29. Schmitz T, Appelman K, Kudejova P, Schutz C, Kratz JV, Moss R, et al. Determination of boron concentration in blood and tissue samples from patients with liver metastases of colorectal carcinoma using prompt gamma ray activation analysis (PGAA). Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2011;69(7):936–41.

    Article  CAS  Google Scholar 

  30. Zonta A, Pinelli T, Prati U, Roveda L, Ferrari C, Clerici AM, et al. Extra-corporeal liver BNCT for the treatment of diffuse metastases: what was learned and what is still to be learned. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8 Suppl):S67–75.

    Article  CAS  Google Scholar 

  31. Chou FI, Chung HP, Liu HM, Chi CW, Lui WY. Suitability of boron carriers for BNCT: accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8 Suppl):S105–8.

    Article  CAS  Google Scholar 

  32. Wittig A, Collette L, Appelman K, Buhrmann S, Jackel MC, Jockel KH, et al. EORTC trial 11001: distribution of two 10B-compounds in patients with squamous cell carcinoma of head and neck, a translational research/phase 1 trial. J Cell Mol Med. 2009;13(8B):1653–65.

    Article  PubMed  Google Scholar 

  33. Wang LW, Chen YW, Ho CY, Hsueh Liu YW, Chou FI, Liu YH, et al. Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at Tsing Hua open-pool reactor. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2014;88:23–7.

    Article  Google Scholar 

  34. Wang LW, Wang SJ, Chu PY, Ho CY, Jiang SH, Liu YW, et al. BNCT for locally recurrent head and neck cancer: preliminary clinical experience from a phase I/II trial at Tsing Hua open-pool reactor. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2011;69(12):1803–6.

    Article  CAS  Google Scholar 

  35. Kankaanranta L, Seppala T, Koivunoro H, Saarilahti K, Atula T, Collan J, et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int J Radiat Oncol Biol Phys. 2012;82(1):e67–75.

    Article  PubMed  Google Scholar 

  36. Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A, et al. First clinical case of boron neutron capture therapy for head and neck malignancies using 18 F-BPA PET. Head Neck. 2006;28(9):850–5.

    Article  PubMed  Google Scholar 

  37. Rij C, Wilhelm A, Sauerwein WG, Loenen A. Boron neutron capture therapy for glioblastoma multiforme. Pharm World Sci. 2005;27(2):92–5.

    Article  PubMed  Google Scholar 

  38. Chandra S, Barth RF, Haider SA, Yang W, Huo T, Shaikh AL, et al. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas. PLoS ONE. 2013;8(9).

  39. Gregoire V, Begg AC, Huiskamp R, Verrijk R, Bartelink H. Selectivity of boron carriers for boron neutron capture therapy: pharmacological studies with borocaptate sodium, L-boronophenylalanine and boric acid in murine tumors. Radiotherapy Oncol: J Eur Soc Therapeutic Radiology Oncol. 1993;27(1):46–54.

    Article  CAS  Google Scholar 

  40. Malan C, Morin C. A concise preparation of 4-borono-l-phenylalanine (l-BPA) from l-phenylalanine. J Org Chem. 1998;63(22):8019–20.

    Article  CAS  Google Scholar 

  41. Nemoto H, Cai J, Iwamoto S, Yamamoto Y. Synthesis and biological properties of water-soluble p-boronophenylalanine derivatives. Relationship between water solubility, cytotoxicity, and cellular uptake. J Med Chem. 1995;38(10):1673–8.

    Article  CAS  PubMed  Google Scholar 

  42. Heikkinen S, Savolainen S, Melkko P. In vitro studies on stability of L-p-boronophenylalanine–fructose complex (BPA-F). J Radiat Res. 2011;52(3):360–4.

  43. Wittig A, Sauerwein WA, Coderre JA, Coderre JA. Mechanisms of transport of p-borono-phenylalanine through the cell membrane in vitro. Radiat Res. 2000;153(2):173–80.

  44. Capuani S, Gili T, Bozzali M, Russo S, Porcari P, Cametti C, et al. Boronophenylalanine uptake in C6 glioma model is dramatically increased by l-DOPA preloading. Appl Radiat Isot. 2009;67(7–8):S34–S6.

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimoto M, Kurihara H, Honda N, Kawai K, Ohe K, Fujii H, et al. Predominant contribution of L-type amino acid transporter to 4-borono-2-(18)F-fluoro-phenylalanine uptake in human glioblastoma cells. Nucl Med Biol. 2013;40(5):625–9.

    Article  CAS  PubMed  Google Scholar 

  46. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15(4):254–66.

    Article  CAS  PubMed  Google Scholar 

  47. Yokoyama K, Miyatake S, Kajimoto Y, Kawabata S, Doi A, Yoshida T, et al. Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J Neurooncol. 2006;78(3):227–32.

    Article  CAS  PubMed  Google Scholar 

  48. Wittig A, Stecher-Rasmussen F, Hilger RA, Rassow J, Mauri P, Sauerwein W. Sodium mercaptoundecahydro-closo-dodecaborate (BSH), a boron carrier that merits more attention. Appl Radiat Isot. 2011;69(12):1760–4.

    Article  CAS  PubMed  Google Scholar 

  49. Soloway AH, Hatanaka H, Davis MA. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem. 1967;10(4):714–7.

    Article  CAS  PubMed  Google Scholar 

  50. Tietze LF, Griesbach U, Bothe U, Nakamura H, Yamamoto Y. Novel carboranes with a DNA binding unit for the treatment of cancer by boron neutron capture therapy. ChemBioChem. 2002;3(2–3):219–25.

    Article  CAS  PubMed  Google Scholar 

  51. Barth RF, Yang W, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, et al. Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood–brain barrier disruption. Cancer Res. 1997;57(6):1129–36.

    CAS  PubMed  Google Scholar 

  52. Barth RF, Yang W, Rotaru JH, Moeschberger ML, Boesel CP, Soloway AH, et al. Boron neutron capture therapy of brain tumors: enhanced survival and cure following blood–brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. Int J Radiat Oncol Biol Phys. 2000;47(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  53. Barth RF, Yang W, Huo T, Riley KJ, Binns PJ, Grecula JC, et al. Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2011;69(12):1813–6.

    Article  CAS  Google Scholar 

  54. Yang F-Y, Chen Y-W, Chou F-I, Yen S-H, Lin Y-L, Wong T-T. Boron neutron capture therapy for glioblastoma multiforme: enhanced drug delivery and antitumor effect following blood–brain barrier disruption induced by focused ultrasound. Future Oncol. 2012;8(10):1361–9.

    Article  CAS  PubMed  Google Scholar 

  55. Tani H, Kurihara H, Hiroi K, Honda N, Yoshimoto M, Kono Y, et al. Correlation of (18)F-BPA and (18)F-FDG uptake in head and neck cancers. Radiother Oncol. 2014;113(2):193–7.

    Article  PubMed  Google Scholar 

  56. Evangelista L, Jori G, Martini D, Sotti G. Boron neutron capture therapy and 18 F-labelled borophenylalanine positron emission tomography: a critical and clinical overview of the literature. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2013;74:91–101.

    Article  CAS  Google Scholar 

  57. Snajdr I, Janousek Z, Takagaki M, Cisarova I, Hosmane NS, Kotora M. Alpha (alpha-) and beta (beta-carboranyl-C-deoxyribosides: syntheses, structures and biological evaluation. Eur J Med Chem. 2014;83:389–97.

    Article  CAS  PubMed  Google Scholar 

  58. Khalil A, Ishita K, Ali T, Tjarks W. N3-substituted thymidine bioconjugates for cancer therapy and imaging. Future Med Chem. 2013;5(6):677–92.

    Article  CAS  PubMed  Google Scholar 

  59. Barth RF, Yang W, Al-Madhoun AS, Johnsamuel J, Byun Y, Chandra S, et al. Boron-containing nucleosides as potential delivery agents for neutron capture therapy of brain tumors. Cancer Res. 2004;64(17):6287–95.

    Article  CAS  PubMed  Google Scholar 

  60. Satapathy R, Dash BP, Bode BP, Byczynski EA, Hosmane SN, Bux S, et al. New classes of carborane-appended 5-thio-D-glucopyranose derivatives. Dalton Trans. 2012;41(29):8982–8.

    Article  CAS  PubMed  Google Scholar 

  61. Patel H, Takagaki M, Bode BP, Snajdr I, Patel D, Sharman C, et al. Carborane-appended saccharides: prime candidates for boron neutron capture therapy (BNCT) clinical trials. Biochem Biophys J Neutron Ther Cancer Treat. 2013;1(1):15–21.

    CAS  Google Scholar 

  62. Kabalka GW, Yao ML, Marepally SR, Chandra S. Biological evaluation of boronated unnatural amino acids as new boron carriers. Appl Radiat Isot. 2009;67(7–8):S374–S9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Washburn LC, Sun TT, Anon JB, Hayes RL. Effect of structure on tumor specificity of alicyclic α-amino acids. Cancer Res. 1978;38(8):2271–3.

    CAS  PubMed  Google Scholar 

  64. Maderna A, Huertas R, Hawthorne MF, Luguya R, Vicente MGH. Synthesis of a porphyrin-labelled carboranyl phosphate diester: a potential new drug for boron neutron capture therapy of cancer. Chem Commun. 2002;16:1784–5.

    Article  Google Scholar 

  65. Vicente MGH, Nurco DJ, Shetty SJ, Osterloh J, Ventre E, Hegde V, et al. Synthesis, dark toxicity and induction of in vitro DNA photodamage by a tetra(4-nido-carboranylphenyl)porphyrin. J Photochem Photobiol B Biol. 2002;68(2–3):123–32.

  66. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  Google Scholar 

  67. Fabris C, Vicente MG, Hao E, Friso E, Borsetto L, Jori G, et al. Tumour-localizing and -photosensitising properties of meso-tetra(4-nido-carboranylphenyl)porphyrin (H2TCP). J Photochem Photobiol B Biol. 2007;89(2–3):131–8.

    Article  CAS  Google Scholar 

  68. Jori G, Soncin M, Friso E, Vicente MG, Hao E, Miotto G, et al. A novel boronated-porphyrin as a radio-sensitizing agent for boron neutron capture therapy of tumours: in vitro and in vivo studies. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8 Suppl):S321–4.

  69. Yang W, Wu G, Barth RF, Swindall MR, Bandyopadhyaya AK, Tjarks W, et al. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(3):883–91.

    Article  CAS  Google Scholar 

  70. Wu G, Barth RF, Yang W, Chatterjee M, Tjarks W, Ciesielski MJ, et al. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem. 2003;15(1):185–94.

    Article  Google Scholar 

  71. Yang W, Barth RF, Wu G, Tjarks W, Binns P, Riley K. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiation Isot: Incl Data, Instrum Methods Agric, Ind Med. 2009;67(7–8 Suppl):S328–31.

    Article  CAS  Google Scholar 

  72. Chacko AM, Li C, Pryma DA, Brem S, Coukos G, Muzykantov V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: crossing the blood–brain barrier divide. Expert Opin Drug Deliv. 2013;10(7):907–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Azab AK, Srebnik M, Doviner V, Rubinstein A. Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers. J Controlled Release: Off J Controlled Release Soc. 2005;106(1–2):14–25.

    Article  CAS  Google Scholar 

  74. Michiue H, Sakurai Y, Kondo N, Kitamatsu M, Bin F, Nakajima K, et al. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials. 2014. Epub 2014/01/24.

  75. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Controlled Release: Off J Controlled Release Soc. 2015;200C:138–57.

    Article  Google Scholar 

  76. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.

    Article  CAS  PubMed  Google Scholar 

  77. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced drug delivery reviews. 2015. Epub 2015/01/13.

  78. Theodoropoulos D, Rova A, Smith JR, Barbu E, Calabrese G, Vizirianakis IS, et al. Towards boron neutron capture therapy: the formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg Med Chem Lett. 2013;23(22):6161–6.

  79. Altieri S, Balzi M, Bortolussi S, Bruschi P, Ciani L, Clerici AM, et al. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J Med Chem. 2009;52(23):7829–35.

    Article  CAS  PubMed  Google Scholar 

  80. Kueffer PJ, Maitz CA, Khan AA, Schuster SA, Shlyakhtina NI, Jalisatgi SS, et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci U S A. 2013;110(16):6512–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Heber EM, Hawthorne MF, Kueffer PJ, Garabalino MA, Thorp SI, Pozzi EC, et al. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci U S A. 2014;111(45):16077–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab. 1997;17(7):713–31.

    Article  CAS  PubMed  Google Scholar 

  83. Achilli C, Grandi S, Ciana A, Guidetti GF, Malara A, Abbonante V, et al. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomed: Nanotechnol, Biol Med. 2014;10(3):589–97.

    Article  CAS  Google Scholar 

  84. Caruso G, Caffo M, Alafaci C, Raudino G, Cafarella D, Lucerna S, et al. Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomed: Nanotechnol, Biolo Med. 2011;7(6):744–52.

    Article  CAS  Google Scholar 

  85. Li N, Zhao P, Salmon L, Ruiz J, Zabawa M, Hosmane NS, et al. Click” star-shaped and dendritic PEGylated gold nanoparticle-carborane assemblies. Inorg Chem. 2013;52(19):11146–55.

    Article  CAS  PubMed  Google Scholar 

  86. Oliveira MF, Guimaraes PP, Gomes AD, Suarez D, Sinisterra RD. Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. J Chem Biol. 2012;6(1):7–23.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    Article  CAS  PubMed  Google Scholar 

  88. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Kareem Azab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luderer, M.J., de la Puente, P. & Azab, A.K. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm Res 32, 2824–2836 (2015). https://doi.org/10.1007/s11095-015-1718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1718-y

KEY WORDS

Navigation