Skip to main content

Advertisement

Log in

Susceptibility of Lung Carcinoma Cells to Nanostructured Lipid Carrier of ARV-825, a BRD4 Degrading Proteolysis Targeting Chimera

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The present work was aimed at developing an optimized and modified nanostructured lipid carrier of BRD4 protein degrading Proteolysis Targeting Chimera (PROTAC) against non-small cell lung carcinoma. PROTACs are an emerging class of anticancer molecules with nanomolar activity but associated with significant solubility challenges. Lipid-based colloidal systems like nanostructured lipid carriers are widely explored for such highly lipophilic molecules. ARV-825, a cereblon-based PROTAC was investigated for its anticancer efficacy in vitro in 2D and 3D lung cancer models. ARV-825 loaded PEGylated nanostructured lipid carriers (AP-NLC) was prepared using melt emulsification technique. ARV-825 was stabilized using Precirol® ATO5 and Captex® 300 EP/NF as the solid and liquid lipid, respectively. However, hydrophobic ion-pairing with medium chain fatty acid was required to improve drug loading and stability. A hydrodynamic diameter and polydispersity index of 56.33 ± 0.42 nm and 0.16 respectively with zeta potential of -21 ± 1.24 mV was observed. In vitro migration and colony formation assay confirmed the anticancer activity of ARV-825 alone and AP-NLC. Nearly 38% and 50% apoptotic cell population were observed after ARV-825 and AP-NLC treatment. Immunoblotting assay showed complete suppression of BRD4 and c-Myc protein expression for AP-NLC. Most importantly, significant reduction in the growth of multicellular 3D spheroid of A549 cells confirmed the effectiveness of BRD4 PROTAC and its lipid nanoparticle in non-small cell lung cancer (NSCLC). AP-NLC. Higher amount of red fluorescence throughout the spheroid surface further confirmed superior efficacy of AP-NLC in tumor penetration and cell killing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng B, Xiong S, Li C, Liang H, Zhao Y, Li J, et al. An annual review of the remarkable advances in lung cancer clinical research in 2019. J Thorac Dis. 2020;12(3):1056–69.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saltos A, Shafique M, Chiappori A. Update on the biology, management, and treatment of small cell lung cancer (SCLC). Frontiers in Oncology. 2020;10.

  3. Bade BC, Cruz CSD. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020;41(1):1–24.

    Article  PubMed  Google Scholar 

  4. Tan BJ, Liu Y, Chang KL, Lim BK, Chiu GN. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int J Nanomedicine. 2012;7:651–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosell R, Karachaliou N. Optimizing lung cancer treatment approaches. Nat Rev Clin Oncol. 2015;12(2):75–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70.

    Article  PubMed  Google Scholar 

  7. Stathis A, Bertoni F. BET proteins as targets for anticancer treatment. Cancer Discov. 2018;8(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  8. Lu Q, Ding X, Huang T, Zhang S, Li Y, Xu L, et al. BRD4 degrader ARV-825 produces long-lasting loss of BRD4 protein and exhibits potent efficacy against cholangiocarcinoma cells. Am J Transl Res. 2019;11(9):5728–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Baratta MG, Schinzel AC, Zwang Y, Bandopadhayay P, Bowman-Colin C, Kutt J, et al. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc Natl Acad Sci. 2015;112(1):232–7.

    Article  CAS  PubMed  Google Scholar 

  10. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T, et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future science OA. 2019;5(3):FSO372.

  12. Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol. 2020;13:1–14.

    Article  Google Scholar 

  13. Saenz DT, Fiskus W, Qian Y, Manshouri T, Rajapakshe K, Raina K, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia. 2017;31(9):1951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci. 2016;113(26):7124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu Q, Ding X, Huang T, Zhang S, Li Y, Xu L, et al. BRD4 degrader ARV-825 produces long-lasting loss of BRD4 protein and exhibits potent efficacy against cholangiocarcinoma cells. American journal of translational research. 2019;11(9):5728.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Saraswat A, Patki M, Fu Y, Barot S, Dukhande VV, Patel K. Nanoformulation of PROteolysis TArgeting Chimera targeting ‘undruggable’c-Myc for the treatment of pancreatic cancer. Nanomedicine. 2020;15(18):1761–77.

    Article  CAS  PubMed  Google Scholar 

  17. Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacology & Therapeutics. 2020:107631.

  18. Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng. 2006;23(4):171–84.

    Article  CAS  PubMed  Google Scholar 

  19. Vartak R, Patil SM, Saraswat A, Patki M, Kunda NK, Patel K. Aerosolized nanoliposomal carrier of remdesivir: an effective alternative for COVID-19 treatment in vitro. Nanomedicine. 2021;16(14):1187–202.

    Article  CAS  PubMed  Google Scholar 

  20. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.

    Article  CAS  PubMed  Google Scholar 

  21. Bhise K, Kashaw SK, Sau S, Iyer AK. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: quality by design (QbD) approach. Int J Pharm. 2017;526(1–2):506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan H, Wang L-L, Du Y-Z, You J, Hu F-Q, Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf, B. 2007;60(2):174–9.

    Article  CAS  Google Scholar 

  23. Rathod D, Fu Y, Patel K. BRD4 PROTAC as a novel therapeutic approach for the treatment of vemurafenib resistant melanoma: preformulation studies, formulation development and in vitro evaluation. European Journal of Pharmaceutical Sciences. 2019;138:105039.

  24. Vartak R, Patki M, Menon S, Jablonski J, Mediouni S, Fu Y, et al. β-cyclodextrin polymer/Soluplus® encapsulated Ebselen ternary complex (EβpolySol) as a potential therapy for vaginal candidiasis and pre-exposure prophylactic for HIV. International Journal of Pharmaceutics. 2020;589:119863.

  25. Yang Y, Ji N, Cai CY, Wang JQ, Lei ZN, Teng QX, et al. Modulating the function of ABCB1: in vitro and in vivo characterization of sitravatinib, a tyrosine kinase inhibitor. Cancer Commun. 2020;40(7):285–300.

    Article  Google Scholar 

  26. Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26(4):484–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uras IZ, Moll HP, Casanova E. Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int J Mol Sci. 2020;21(12):4325.

    Article  CAS  PubMed Central  Google Scholar 

  28. Zengerle M, Chan K-H, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol. 2015;10(8):1770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J-Y, Song Y-Q, Peng J, Luo H-L. Nanostructured Lipid Carriers Delivering Sorafenib to Enhance Immunotherapy Induced by Doxorubicin for Effective Esophagus Cancer Therapy. ACS Omega. 2020;5(36):22840–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han C, Li Y, Sun M, Liu C, Ma X, Yang X, et al. Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR-overexpressing tumor in vivo. Artificial cells, nanomedicine, and biotechnology. 2014;42(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  31. Jia L, Zhang D, Li Z, Duan C, Wang Y, Feng F, et al. Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Colloids Surf, B. 2010;80(2):213–8.

    Article  CAS  Google Scholar 

  32. Tetyczka C, Griesbacher M, Absenger-Novak M, Fröhlich E, Roblegg E. Development of nanostructured lipid carriers for intraoral delivery of domperidone. Int J Pharm. 2017;526(1–2):188–98.

    Article  CAS  PubMed  Google Scholar 

  33. Khalil RM, Abd El-Bary A, Kassem MA, Ghorab MM, Basha M. Influence of formulation parameters on the physicochemical properties of meloxicam-loaded solid lipid nanoparticles. Egyptian Pharmaceutical Journal. 2013;12(1):63.

    Google Scholar 

  34. Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 2012;13(1):125–33.

    Article  PubMed  Google Scholar 

  35. Winter E, Pizzol CD, Locatelli C, Crezkynski-Pasa TB. Development and evaluation of lipid nanoparticles for drug delivery: Study of toxicity in vitro and in vivo. J Nanosci Nanotechnol. 2016;16(2):1321–30.

    Article  CAS  PubMed  Google Scholar 

  36. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Research in pharmaceutical sciences. 2018;13(4):288.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell chemical biology. 2018;25(1):67–77. e3.

  38. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14(8):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Decker CC, Zechner L, Krstin S, Wink M. In vitro wound healing of tumor cells: inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol Toxicol. 2019;20(1):1–12.

    Article  Google Scholar 

  40. Yang X. Clonogenic assay. Bio-protocol. 2012;2(10):e187-e.

  41. Gao Z, Yuan T, Zhou X, Ni P, Sun G, Li P, et al. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biol Ther. 2018;19(5):407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tchoryk A, Taresco V, Argent RH, Ashford M, Gellert PR, Stolnik S, et al. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 2019;30(5):1371–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are thankful to Department of Pharmaceutical Sciences, St. John’s University, NY for providing the fund for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan Patel.

Ethics declarations

Conflicts of Interests

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vartak, R., Saraswat, A., Yang, Y. et al. Susceptibility of Lung Carcinoma Cells to Nanostructured Lipid Carrier of ARV-825, a BRD4 Degrading Proteolysis Targeting Chimera. Pharm Res 39, 2745–2759 (2022). https://doi.org/10.1007/s11095-022-03184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03184-3

KEY WORDS

Navigation