Skip to main content
Log in

Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance

  • Original papers
  • Published:
Photosynthetica

Abstract

The specific features of the structural and functional organisation of the photosynthetic apparatus (PSA) were studied in wild halophytes representing three strategies of salt tolerance: euhalophyte Salicornia perennans, crynohalophyte Limonium gmelinii, and glycohalophyte Artemisia santonica. The sodium content in aboveground parts of the plants corresponded to the strategy of salt tolerance. The photosynthetic cells of the euhalophyte were large and contained a higher number of chloroplasts than those in other species. In contrast, the number of cells per a leaf area unit was lower in S. perennans as compared to cryno- and glycohalophytes. Thereupon, the cell and chloroplast surface area per leaf area unit declined in the following sequence: A. santonica > L. gmelinii > S. perennans. However, the large cells of euhalophyte contained chloroplasts of larger sizes with 4- to 5-fold higher chlorophyll (Chl) content per chloroplast and Chl concentration in chloroplast volume unit. Also, chloroplasts of S. perennans were characterised by the higher content of glyco- and phospholipids. Qualitative composition of fatty acids (FA) in lipids isolated from the chloroplast-enriched fraction was similar in all three species; however, the index of unsaturation of FA was higher in glycohalophyte A. santonica than those in two other species. Under natural condition, PSA of all three halophytes showed high resistance to soil salinity. The results indicated tolerance of PSII to the photodamage in halophytes. The high rate of electron transport through PSII can be important to prevent oxidative damage of PSA in halophytes under strong light and hight temperature in vivo. Thus, the strategy of salt tolerance is provided by both the leaf anatomical structure and the ultrastructure of photosynthetic membranes, which is determined in particular by the specific composition of lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

leaf area

Acel :

total cell surface areas

Achl :

chloroplast surface areas per leaf area

Car:

carotenoids

Chl:

chlorophyll

DGDG:

digalactosyldiacylglycerols

DM:

dry mass

ETR:

electron transport rate

F0 :

basic fluorescence level

FA:

fatty acids

Fm :

maximal fluorescence

FM:

fresh mass

Fs :

steady-state fluorescence

Fv :

variable fluorescence

GL:

glycolipids

MGDG:

monogalactosyldiacylglycerols

PA:

phosphatidic acids

PC:

phosphatidylcholines

PE:

phosphatidylethanolamines

PG:

phosphatidylglycerols

PI:

phosphatidylinositols

PL:

phospholipid

PSA:

photosynthetic apparatus

SQDG:

sulfoquinovosyldiacylglycerols

ST:

sterols

TL:

total lipids

TLC:

thin-layer chromatography

UI:

unsaturation index of fatty acids

WC:

water content

ΦPSII :

actual quantum yield of PSII

References

  • Adams III W.W., Zarter C.R., Much K.E. et al.: Energy dissipation and photoinhibition: a continuum of photoprotection.–In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49–64. Springer-Verlag, Dordrecht 2006.

    Chapter  Google Scholar 

  • Albertsson P-A.: A quantitative model of the domain structure of the photosynthetic membrane.–Trends Plant Sci. 6: 349–358, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Amiri B., Assareh M.H., Jafari M. et al.: Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.).–Caspian J. Env. Sci. 8: 79–87, 2010.

    Google Scholar 

  • Anderson J.M.: Insights in the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective.–Aust. J. Plant Physiol. 26: 625–639, 1999.

    Article  CAS  Google Scholar 

  • Aziz I., Gul B., Gulzar S., Khan M.A.: Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi.–Pak. J. Bot. 43: 587–594, 2011.

    Google Scholar 

  • Balnokin Y.V., Kurkova E.B., Myasoedov N.A. et al.: Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt-water balance by extremely high concentrations of NaCl.–Russ. J. Plant Physl+ 51: 905–912, 2004.

    Google Scholar 

  • Belugin B.V., Zhestkova I.M., Trofimova M.S.: Affinity of PIPaquaporins to sterol-enriched domains in plasma membrane of the cells of etiolated pea seedlings.–Biochem. Suppl. Ser. A 5: 56–63, 2011.

    Article  Google Scholar 

  • Bligh E.G., Dyer W.J.: A rapid method of total lipid extraction and purification.–Can. J. Biochem. Phys. 37: 911–917, 1959.

    Article  CAS  Google Scholar 

  • Daraban I.N., Mihali C.V., Turcus V. et al.: Esem and edax observation on leaf and stem epidermal structures (stomata and salt glands) in Limonium gmelinii (Willd.) Kuntze.–Ann. RSCB 18: 123–130, 2013.

    Google Scholar 

  • Davy A.J., Bishop G.F., Costa C.S.B.: Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss).–J. Ecol. 89: 681–707, 2001.

    Article  Google Scholar 

  • Flowers T.J., Colmer T.D.: Salinity tolerance in halophytes.–New Phytol. 179: 945–963, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Glenn E.P., Brown J.J., Blumwald E.: Salt tolerance and crop potential of halophytes.–Crit. Rev. Plant Sci. 18: 227–255, 1999.

    Article  Google Scholar 

  • Gorham J.: Mechanisms of salt tolerance in halophytes.–In: Choukr-Allah R., Malcolm C.V., Hamdy A. (ed.): Halophytes and Biosaline Agriculture. Pp. 31–53. Marcel Dekker Inc., New York 1996.

    Google Scholar 

  • Havaux M.: Carotenoids as membrane stabilizers in chloroplasts.–Trends Plant Sci. 3: 147–151, 1998.

    Article  Google Scholar 

  • Hirayama O., Mihara M.: Characterization of membrane lipids of higher plants different in salt tolerance.–Agric. Biol. Chem. 51: 3215–3221, 1987.

    CAS  Google Scholar 

  • Hölzl G., Dörman P.: Structure and function of glycoglycerolipids in plants and bacteria.–Prog. Lipid Res. 46: 225–243, 2007.

    Article  PubMed  Google Scholar 

  • Ivanov L.A., Ronzhina D.A., Ivanova L.A.: Changes in leaf characteristics as indicator of the alteration of functional types of steppe plants along the aridity gradient.–Russ. J. Plant Physl+ 55: 301–307, 2008.

    Article  CAS  Google Scholar 

  • Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K.: Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural–Russ. J. Plant Physl+ 60: 812–820, 2013.

    Article  CAS  Google Scholar 

  • Ivanova A., Nechev J., Stefanov K.: Effect of soil salinity on the lipid composition of halophyte plants from the sand bar of Pomorie.–Gen. Appl. Plant Physiol. 32: 125–131, 2006.

    Google Scholar 

  • Ivanova L.A., Pyankov V.I.: Structural adaptation of the leaf mesophyll to shading.–Russ. J. Plant Physl+ 49: 419–432, 2002.

    Article  CAS  Google Scholar 

  • Jennings D.H.: Halophytes, succulence and sodium in plants–a unified theory.–New Phytol. 67: 899–911, 1968.

    Article  CAS  Google Scholar 

  • Joyard J., Ferro M., Masselon C. et al.: Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism.–Prog. Lipid Res. 49: 128–158, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H.K.: Hlorophylls and carotenoids: pigments of photosyntethetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Li W., Zhang C., Lu Q. et al.: The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa.–J. Plant Physiol. 168: 1743–1752, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Lyons J.M., Weaton T.A., Pratt H.K.: Relationship between the physical natures of mitochondrial membranes.–J. Plant Physiol. 39: 262–268, 1964.

    Article  CAS  Google Scholar 

  • Ma X.-L., Wang Z.-L., Qi Y.-C. et al.: Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress.–Acta Bot. Sin. 45: 1359–1365, 2003.

    CAS  Google Scholar 

  • Markovskaya E.F., Sergienko L.A., Starodubtceva A.A.: Pigment apparatus of some species of higher plants of coastal zone of arctic tidal seas.–Fund. Res. 1: 160–163, 2012.

    Google Scholar 

  • Mizusawa N., Wada H.: The role of lipids in photosystem II.–Biochim. Biophys. Acta 1817: 194–208, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Mokronosov A.T.: [Developmental Aspect of Photosynthesis]. Pp. 196. Nauka, Moscow 1981.

    Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review.–Ecotoxicol. Environ. Safe. 60: 324–349, 2005.

    Article  CAS  Google Scholar 

  • Popova O.F., Slemnev N.N., Popova I.A., Maslova T.G.: Content of pigments of plastids in plants of Gobi and Karakum deserts.–Bot. Zh. SSSR 69: 334–344, 1984.

    CAS  Google Scholar 

  • Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.–Z. Naturforsch C 59: 835–842, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Roohi A., Nazish B., et al.: A critical review on halophytes: salt tolerant plants.–J. Med. Plants Res. 5: 7108–7118, 2011.

    Google Scholar 

  • Rozentsvet O.A., Nesterov V.N., Sinyutina N.F.: The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata.–Chemosphere 89: 108–113, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Rozentsvet O.A., Nesterov V.N.: Bogdanova E.S. Membraneforming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia.–Phytochemistry 105: 37–42, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Sai Kachout S., Ben Mansoura A., Jaffel K. et al.: The effect of salinity on the growth of the halophyte a Triplex hortensis (Chenopodiaceae).–Appl. Ecol. Environ. Res. 7: 319–332, 2009.

    Article  Google Scholar 

  • Sato N.: Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution.–J. Plant Res. 117: 495–505, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U., Armond P.A.: Heat-induced change of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level.–Biochim. Biophys. Acta 502: 138–151, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Sui N., Li M., Li K. et al.: Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity.–Photosynthetica 48: 623–629, 2010.

    Article  CAS  Google Scholar 

  • Ushakova S.A., Kovaleva N.P., Gribovskaya T.V. et al.: Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS.–Adv. Space Res. 36: 1349–1353, 2005.

    Article  CAS  Google Scholar 

  • Vaskovsky V.E., Latyshev N.A.: Modified Jungnickel's reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms.–J. Chromatogr. 115: 246–249, 1975.

    Article  CAS  PubMed  Google Scholar 

  • Voronkova N.M., Burkovskaya E.V., Bezdeleva T.A., Burundukova O.L.: Morphological and biological features of plants related to their adaptation to coastal habitats.–Russ. J. Ecol. 39: 1–7, 2008.

    Article  Google Scholar 

  • Yamane Y., Yasuhiro K., Hiroyuki K., Satoh K.: Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants.–Photosynth. Res. 52: 57–64, 1997.

    Article  CAS  Google Scholar 

  • Yamamoto Y., Kai S., Ohnishi A. et al.: Quality control of PSII: behavior of PSII in the highly crowded grana thylakoid under excessive light.–Plant Cell Physiol. 55: 1206–1215, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nesterov.

Additional information

Acknowledgments: This study was financially supported by the Russian Foundation for Basic Research Grants No. 04-12-01110-a and 14-04-1018914-k, which is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, O.A., Bogdanova, E.S., Ivanova, L.A. et al. Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance. Photosynthetica 54, 405–413 (2016). https://doi.org/10.1007/s11099-015-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0182-6

Additional key words

Navigation