Skip to main content
Log in

Methoxylated flavones: occurrence, importance, biosynthesis

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Lipophilic flavones with several methoxyl residues occur in various clades of land plants, from liverworts to core eudicots. Their chemodiversity is mediated by the manifold combinations of oxygenation and methoxylation patterns. In the Lamiaceae, Asteraceae, and Rutaceae, (poly)methoxylated flavones are thought to be produced by secretory tissues and stored externally or in oil cavities. They exhibit an array of bioactivities in vitro and in vivo, and may constitute part of the plants’ chemical defense mechanisms and represent promising natural lead molecules for the development of potent antiproliferative, antidiabetic, or anti-inflammatory drugs. The biosynthesis of (poly)methoxylated flavones in sweet basil (Ocimum basilicum L.) has been largely elucidated in the past few years. The knowledge obtained in those studies can be used for enzymatic semi-synthesis of these flavones as well as for further cell biological and physiological studies of basil trichome metabolism. In addition, these findings create an excellent starting point for investigations into (poly)methoxylated flavone metabolism in more and less distantly related taxa, which would shed light on the evolution of this biosynthetic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CHS:

Chalcone synthase

FNS:

Flavone synthase

FOMT:

Flavonoid O-methyltransferase

F(digit)OMT:

Flavonoid (digit)-O-methyltransferase

2-ODD:

2-Oxoglutarate-dependent dioxygenase

PMF:

Polymethoxylated flavones

PTC52:

Protochlorophyllide a oxygenase

RO:

Rieske-type oxygenase

References

  • Abbaszadeh H, Ebrahimi SA, Akhavan MM (2014) Antiangiogenic activity of xanthomicrol and calycopterin, two polymethoxylated hydroxyflavones in both in vitro and ex vivo models. Phytother Res 28:1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 27:809–838

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45

    Article  CAS  PubMed  Google Scholar 

  • Alarif WM, Abdel-Lateff A, Al-Abd AM, Basaif SA, Badria FA, Shams M, Ayyad S-EN (2013) Selective cytotoxic effects on human breast carcinoma of new methoxylated flavonoids from Euryops arabicus grown in Saudi Arabia. Eur J Med Chem 66:204–210

    Article  CAS  PubMed  Google Scholar 

  • Almada-Ruiz E, Martinez-Tellez MA, Hernandez-Alamos MM, Vallejo S, Primo-Yufera E, Vargas-Arispuro I (2003) Fungicidal potential of methoxylated flavones from citrus for in vitro control of Colletotrichum gloeosporioides, causal agent of anthracnose disease in tropical fruits. Pest Manag Sci 59:1245–1249

    Article  CAS  PubMed  Google Scholar 

  • Anzellotti D, Ibrahim RK (2000) Novel flavonol 2-oxoglutarate dependent dioxygenase: affinity purification, characterization, and kinetic properties. Arch Biochem Biophys 382:161–172

    Article  CAS  PubMed  Google Scholar 

  • Anzellotti D, Ibrahim RK (2004) Molecular characterization and functional expression of flavonol 6-hydroxylase. BMC Plant Biol 4:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arroo RRJ, Beresford K, Bhambra AS, Boarder M, Budriesi R, Cheng Z, Micucci M, Ruparelia KC, Surichan S, Androutsopoulos VP (2014) Phytoestrogens as natural prodrugs in cancer prevention: towards a mechanistic model. Phytochem Rev 13:853–866

    Article  CAS  Google Scholar 

  • Ayers S, Zink DL, Mohn K, Powell JS, Brown CM, Murphy T, Brand R, Pretorius S, Stevenson D, Thompson D, Singh SB (2008) Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry 69:541–545

    Article  CAS  PubMed  Google Scholar 

  • Ballester A-R, Teresa Lafuente M, de Vos RCH, Bovy AG, Gonzalez-Candelas L (2013a) Citrus phenylpropanoids and defence against pathogens. Part I: metabolic profiling in elicited fruits. Food Chem 136:178–185

    Article  CAS  PubMed  Google Scholar 

  • Ballester A-R, Teresa Lafuente M, Gonzalez-Candelas L (2013b) Citrus phenylpropanoids and defence against pathogens. Part II: gene expression and metabolite accumulation in the response of fruits to Penicillium digitatum infection. Food Chem 136:285–291

    Article  CAS  PubMed  Google Scholar 

  • Barreca D, Bisignano C, Ginestra G, Bisignano G, Bellocco E, Leuzzi U, Gattuso G (2013) Polymethoxylated, C- and O-glycosyl flavonoids in tangelo (Citrus reticulata × Citrus paradisi) juice and their influence on antioxidant properties. Food Chem 141:1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Barros-Filho BA, Nunes FM, da Conceicao M, de Oliveira F, Andrade-Neto M, de Mattos MC, Barbosa FG, Mafezoli J, Pirani JR (2007) Secondary metabolites from Esenbeckia almawillia Kaastra (Rutaceae). Quim Nova 30:1589–1591

    Article  CAS  Google Scholar 

  • Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci USA 105:4933–4938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benavides A, Bassarello C, Montoro P, Vilegas W, Placente S, Pizza C (2007) Flavonoids and isoflavonoids from Gynerium sagittatum. Phytochemistry 68:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Berim A, Gang DR (2013a) Characterization of two candidate flavone 8-O-methyltransferases suggests the existence of two potential routes to nevadensin in sweet basil. Phytochemistry 92:33–41

    Article  CAS  PubMed  Google Scholar 

  • Berim A, Gang DR (2013b) The roles of a flavone 6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 288:1795–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berim A, Hyatt DC, Gang DR (2012) A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil. Plant Physiol 160:1052–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berim A, Park J-J, Gang DR (2014) Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. Plant J 80:385–395

    Article  CAS  PubMed  Google Scholar 

  • Berim A, Kim M-J, Gang DR (2015) Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil. Plant Cell Physiol 56:126–136

    Article  PubMed  Google Scholar 

  • Bisio A, Corallo A, Gastaldo P, Romussi G, Ciarallo G, Fontana N, De Tommasi N, Profumo P (1999) Glandular hairs and secreted material in Salvia blepharophylla Brandegee ex Epling grown in Italy. Ann Bot 83:441–452

    Article  CAS  Google Scholar 

  • Bomati EK, Austin MB, Bowman ME, Dixon RA, Noel JP (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J Biol Chem 280:30496–30503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredebach M, Matern U, Martens S (2011) Three 2-oxoglutarate-dependent dioxygenase activities of Equisetum arvense L. forming flavone and flavonol from (2S)-naringenin. Phytochemistry 72:557–563

    Article  CAS  PubMed  Google Scholar 

  • Budzianowski J, Morozowska M, Wesolowska M (2005) Lipophilic flavones of Primula veris L. from field cultivation and in vitro cultures. Phytochemistry 66:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Bui ML, Grayer RJ, Veitch NC, Kite GC, Tran H, Nguyen QCK (2004) Uncommon 8-oxygenated flavonoids from Limnophila aromatica (Scrophulariaceae). Biochem Syst Ecol 32:943–947

    Article  CAS  Google Scholar 

  • Cacace S, Schroder G, Wehinger E, Strack D, Schmidt J, Schroder J (2003) A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62:127–137

    Article  CAS  PubMed  Google Scholar 

  • Charoensinphon N, Qiu P, Dong P, Zheng J, Ngauv P, Cao Y, Li S, Ho C-T, Xiao H (2013) 5-Demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. Mol Nutr Food Res 57:2103–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng MJ, Lee SJ, Chang YY, Wu SH, Tsai IL, Jayaprakasam B, Chen IS (2003) Chemical and cytotoxic constituents from Peperomia sui. Phytochemistry 63:603–608

    Article  CAS  PubMed  Google Scholar 

  • Christensen AB, Gregersen PL, Olsen CE, Collinge DB (1998) A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Mol Biol 36:219–227

    Article  CAS  PubMed  Google Scholar 

  • Clavin M, Gorzalczany S, Macho A, Munoz E, Ferraro G, Acevedo C, Martino V (2007) Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J Ethnopharmacol 112:585–589

    Article  CAS  PubMed  Google Scholar 

  • Crosby KC, Pietraszewska-Bogiel A, Gadella TWJ Jr, Winkel BSJ (2011) Forster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Lett 585:2193–2198

    Article  CAS  PubMed  Google Scholar 

  • Dajas F, Abin-Carriquiry JA, Arredondo F, Echeverry C, Rivera-Megret F (2013) Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent Nerv Syst Agents Med Chem 13:30–35

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Maia GL, Falcao-Silva VdS, Vieira Aquino PG, de Araujo-Junior JX, Tavares JF, da Silva MS, Rodrigues LC, de Siqueira-Junior JP, Barbosa-Filho JM (2011) Flavonoids from Praxelis clematidea RM King and Robinson modulate bacterial drug resistance. Molecules 16:4828–4835

    Article  CAS  Google Scholar 

  • De Luca V, Ibrahim RK (1985a) Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. I. Partial purification and some properties of S-adenosyl-l-methionine: flavonol 3,6,7, and 4′-O-methyltransferases. Arch Biochem Biophys 238:596–605

    Article  PubMed  Google Scholar 

  • De Luca V, Ibrahim RK (1985b) Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. II. Substrate interaction and product inhibition studies of flavonol 3,6, and 4′-O-methyltransferases. Arch Biochem Biophys 238:606–618

    Article  PubMed  Google Scholar 

  • Degutierrez AN, Catalan CAN, Diaz JG, Herz W (1995) Sesquiterpene lactones, a labdane and other constituents of Urolepis hecantha and Chromolaena arnottiana. Phytochemistry 39:795–800

    Article  Google Scholar 

  • Del Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, Marin MP, Del Rio JA, Ortuno A, Ibarra I (2004) Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Postulation of a biosynthetic pathway. J Agric Food Chem 52:4987–4992

    Article  PubMed  CAS  Google Scholar 

  • Del Rio JA, Gomez P, Baidez AG, Arcas MC, Botia JM, Ortuno A (2004) Changes in the levels of polymethoxyflavones and flavanones as part of the defense mechanism of Citrus sinensis (Cv. Valencia late) fruits against Phytophthora citrophthora. J Agric Food Chem 52:1913–1917

    Article  PubMed  CAS  Google Scholar 

  • Du Q, Chen H (2010) The methoxyflavones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chem 119:567–572

    Article  CAS  Google Scholar 

  • During A, Larondelle Y (2013) The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: structure-activity relationships of flavones. Biochem Pharmacol 86:1739–1746

    Article  CAS  PubMed  Google Scholar 

  • Echeverry C, Arredondo F, Andres Abin-Carriquiry J, Midiwo JO, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure-activity relationship study. J Agric Food Chem 58:2111–2115

    Article  CAS  PubMed  Google Scholar 

  • Evans M, Sharma P, Guthrie N (2012) Bioavailability of citrus plymethoxylated flavones and their biological role in metabolic syndrome and hyperlipidemia. In: Noreddin A (ed) Readings in advanced pharmacokinetics—theory, methods and applications. InTech, Rijeka, pp 267–284

    Google Scholar 

  • Farrow SC, Facchini PJ (2013) Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy. J Biol Chem 288:28997–29012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felippe LG, Baldoqui DC, Kato MJ, Bolzani VdS, Guimaraes EF, Cicarelli RMB, Furlan M (2008) Trypanocidal tetrahydrofuran lignans from Peperomia blanda. Phytochemistry 69:445–450

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JFS, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15:3135–3170

    Article  CAS  PubMed  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreyra MLF, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Google Scholar 

  • Firn RD, Jones CG (2009) A Darwinian view of metabolism: molecular properties determine fitness. J Exp Bot 60:719–726

    Article  CAS  PubMed  Google Scholar 

  • Frick S, Kutchan TM (1999) Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J 17:329–339

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Wang JH, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E (2002) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14:505–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garratt PJ, Scheinmann F, Sondheimer F (1967) Constituents of Casimiroa edulis Llave et Lex: VIII. The structures of zapotin and zapotinin. Tetrahedron 23:2413–2416

    Article  CAS  Google Scholar 

  • Gauthier A, Gulick PJ, Ibrahim RK (1996) cDNA cloning and characterization of a 3′/5′-O-methyltransferase for partially methylated flavonols from Chrysosplenium americanum. Plant Mol Biol 32:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Giangaspero A, Ponti C, Pollastro F, Del Favero G, Della Loggia R, Tubaro A, Appendino G, Sosa S (2009) Topical anti-inflammatory activity of eupatilin, a lipophilic flavonoid from mountain wormwood (Artemisia umbelliformis Lam.). J Agric Food Chem 57:7726–7730

    Article  CAS  PubMed  Google Scholar 

  • Goepfert J, Conrad J, Spring O (2006) 5-Deoxynevadensin, a novel flavone in sunflower and aspects of biosynthesis during trichome development. Nat Prod Commun 1:935–940

    CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould KS, Lister C (2006) Flavonoid functions in plants. In: Markham KR, Andersen CM (eds) Flavonoids—chemistry, biochemistry, and applications. CRC Press, Boca Raton, pp 397–442

    Google Scholar 

  • Gouveia SC, Castilho PC (2010) Characterization of phenolic compounds in Helichrysum melaleucum by high-performance liquid chromatography with on-line ultraviolet and mass spectrometry detection. Rapid Commun Mass Spectrom 24:1851–1868

    Article  CAS  PubMed  Google Scholar 

  • Gray J, Wardzala E, Yang ML, Reinbothe S, Haller S, Pauli F (2004) A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol Biol 54:39–54

    Article  CAS  PubMed  Google Scholar 

  • Grayer RJ, Veitch NC (1998) An 8-hydroxylated external flavone and its 8-O-glucoside from Becium grandiflorum. Phytochemistry 47:779–782

    Article  CAS  PubMed  Google Scholar 

  • Grayer RJ, Veitch NC, Kite GC, Price AM, Kokubun T (2001) Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum. Phytochemistry 56:559–567

    Article  CAS  PubMed  Google Scholar 

  • Grayer RJ, Eckert MR, Lever A, Veitch NC, Kite GC, Paton AJ (2010) Distribution of exudate flavonoids in the genus Plectranthus. Biochem Syst Ecol 38:335–341

    Article  CAS  Google Scholar 

  • Gunatilaka AAL, Sirimanne SR, Sotheeswaran S, Sriyani HTB (1982) Flavonoids of Gardenia cramerii and Gardenia forsbergii bud exudates. Phytochemistry 21:805–806

    Article  CAS  Google Scholar 

  • Haberlein H, Tschiersch KP, Schafer HL (1994) Flavonoid from Leptospermum scoparium with affinity to the benzodiazepine receptor characterized by structure-activity relationships and in vivo studies of a plant extract. Pharmazie 49:912–922

    CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6:273–275

    Article  CAS  PubMed  Google Scholar 

  • Halbwirth H (2010) The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 11:595–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbwirth H, Forkmann G, Stich K (2004) The A-ring specific hydroxylation of flavonols in position 6 in Tagetes sp. is catalyzed by a cytochrome P450 dependent monooxygenase. Plant Sci 167:129–135

    Article  CAS  Google Scholar 

  • Halbwirth H, Stich K (2006) An NADPH and FAD dependent enzyme catalyzes hydroxylation of flavonoids in position 8. Phytochemistry 67:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Han X-J, Wu Y-F, Gao S, Yu H-N, Xu R-X, Lou H-X, Cheng A-X (2014) Functional characterization of a Plagiochasma appendiculatum flavone synthase I showing flavanone 2-hydroxylase activity. FEBS Lett 588:2307–2314

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Baxter H (eds) (1999) The handbook of natural flavonoids. Wiley, Chichester

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat Prod Rep 18:310–333

    Article  CAS  PubMed  Google Scholar 

  • Ibdah M, Zhang XH, Schmidt J, Vogt T (2003) A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J Biol Chem 278:43961–43972

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim RK (2005) A forty-year journey in plant research: original contributions to flavonoid biochemistry. Can J Bot 83:433–450

    Article  CAS  Google Scholar 

  • Jay M, Deluca V, Ibrahim RK (1985) Purification, properties and kinetic mechanism of flavonol 8-O-methyltransferase from Lotus corniculatus L. Eur J Biochem 153:321–325

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Kim HG, Park S, Lee JH, Kim Y-H, Kim G-S, Jin JS, Kwak Y-S, Huh MR, Lee JE, Song Y, Shin SC (2014) Variation in flavonoid levels in Citrus benikoji Hort. ex. Tan. infected by Colletotrichum gloeosporioides. Food Chem 148:284–288

    Article  CAS  PubMed  Google Scholar 

  • Joe EJ, Kim B-G, An B-C, Chong Y, Ahn J-H (2010) Engineering of flavonoid O-methyltransferase for a novel regioselectivity. Mol Cells 30:137–141

    Article  CAS  PubMed  Google Scholar 

  • Johann S, Oliveira VL, Pizzolatti MG, Schripsema J, Braz-Filho R, Branco A, Smânia A Jr (2007) Antimicribial activity of wax and hexane extracts from Citrus ssp. peels. Mem Inst Oswaldo Cruz 102:681–685

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  CAS  PubMed  Google Scholar 

  • Jullien F, Voirin B, Bernillon J, Favrebonvin J (1984) Highly oxygenated flavones from Mentha piperita. Phytochemistry 23:2972–2973

    Article  CAS  Google Scholar 

  • Kahnberg P, Lager E, Rosenberg C, Schougaard J, Camet L, Sterner O, Nielsen EO, Nielsen M, Liljefors T (2002) Refinement and evaluation of a pharmacophore model for flavone derivatives binding to the benzodiazepine site of the GABA(A) receptor. J Med Chem 45:4188–4201

    Article  CAS  PubMed  Google Scholar 

  • Kang SI, Shin HS, Kim HM, Hong YS, Yoon SA, Kang SW, Kim JH, Kim MH, Ko HC, Kim SJ (2012) Immature Citrus sunki peel extract exhibits antiobesity effects by beta-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 35:223–230

    Article  CAS  PubMed  Google Scholar 

  • Kang J-H, McRoberts J, Shi F, Moreno JE, Jones AD, Howe GA (2014) The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol 164:1161–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaii S, Ikuina T, Hikima T, Tokiwano T, Yoshizawa Y (2012) Relationship between structure and antiproliferative activity of polymethoxyflavones towards HL60 cells. Anticancer Res 32:5239–5244

    CAS  PubMed  Google Scholar 

  • Khouri HE, Deluca V, Ibrahim RK (1988) Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. 3. Purification and kinetic analysis of S-adenosyl-l-methionine-3-methylquercetin 7-O-methyltransferase. Arch Biochem Biophys 265:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kim B-G, Lee YJ, Lee S, Lim Y, Cheong Y, Ahn J-H (2008) Altered regioselectivity of a poplar O-methyltransferase, POMT-7. J Biotechnol 138:107–111

    Article  CAS  PubMed  Google Scholar 

  • Koga N, Ohta C, Kato Y, Haraguchi K, Endo T, Ogawa K, Ohta H, Yano M (2011) In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450. Xenobiotica 41:927–933

    Article  CAS  PubMed  Google Scholar 

  • Kong CH, Xu XH, Zhou B, Hu F, Zhang CX, Zhang MX (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Kong CH, Zhao H, Xu XH, Wang P, Gu Y (2007) Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem 55:6007–6012

    Article  CAS  PubMed  Google Scholar 

  • Kong CH, Xu XH, Zhang M, Zhang SZ (2010) Allelochemical tricin in rice hull and its aurone isomer against rice seedling rot disease. Pest Manag Sci 66:1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold E (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraut L, Klein R, Mues R (1992) Flavonoid diversity in the liverwort genus Monoclea Hooker. Z Naturforsch C 47:794–799

    CAS  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. doi:10.1155/2013/162750

  • Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Lam KH, Alex D, Lam IK, Tsui SKW, Yang ZF, Lee SMY (2011) Nobiletin, a polymethoxylated flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model. J Cell Biochem 112:3313–3321

    Article  CAS  PubMed  Google Scholar 

  • Lam IK, Alex D, Wang Y-H, Liu P, Liu A-L, Du G-H, Lee SMY (2012) In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent. Mol Nutr Food Res 56:945–956

    Article  CAS  PubMed  Google Scholar 

  • Lansky EP, Paavilainen HM, Pawlus AD, Newman RA (2008) Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents. J Ethnopharmacol 119:195–213

    Article  CAS  PubMed  Google Scholar 

  • Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J Biol Chem 276:1688–1695

    Article  CAS  PubMed  Google Scholar 

  • Laursen T, Moller BL, Bassard J-E (2015) Plasticity of specialized metabolism as mediated by dynamic metabolons. Trends Plant Sci 20:20–32

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Kim JH, Kim BG, Lim Y, Ahn J-H (2008) Characterization of flavone synthase I from rice. BMB Rep 41:68–71

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-S, Cha B-Y, Saito K, Yamakawa H, Choi S-S, Yamaguchi K, Yonezawa T, Teruya T, Nagai K, Woo J-T (2010) Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochem Pharmacol 79:1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-S, Cha B-Y, Choi S-S, Choi B-K, Yonezawa T, Teruya T, Nagai K, Woo J-T (2013) Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem 24:156–162

    Article  CAS  PubMed  Google Scholar 

  • Leong YW, Harrison LJ, Bennett GJ, Kadir AA, Connolly JD (1998) A dihydrochalcone from Lindera lucida. Phytochemistry 47:891–894

    Article  CAS  Google Scholar 

  • Li Y, Zheng J, Xiao H, McClements DJ (2012) Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocolloids 27:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ban Z, Qin H, Ma L, King AJ, Wang G (2015) A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol 167:650–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M-q, Liu J-f (2012) Structure and histochemistry of the glandular trichomes on the leaves of Isodon rubescens (Lamiaceae). Afr J Biotechnol 11:4069–4078

    Google Scholar 

  • Liu K, Yang SL, Roberts MF, Elford BC, Phillipson JD (1992) Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep 11:637–640

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wagner H, Bauer R (1996) Nevadensin glycosides from Lysionotus pauciflorus. Phytochemistry 42:1203–1205

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wagner H, Bauer R (1998) Phenylpropanoids and flavonoid glycosides from Lysionotus pauciflorus. Phytochemistry 48:339–343

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xu X, Cheng D, Yao X, Pan S (2012) Structure-activity relationship of citrus polymethoxylated flavones and their inhibitory effects on Aspergillus niger. J Agric Food Chem 60:4336–4341

    Article  CAS  PubMed  Google Scholar 

  • Lu YR, Foo LY (2002) Polyphenolics of Salvia—a review. Phytochemistry 59:117–140

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Lai C-S, Chung C-H, Yang J-M, Hsu K-C, Chen C-Y, Chung T-S, Li S, Ho C-T, Pan M-H (2014) 5-Demethyltangeretin is more potent than tangeretin in inhibiting dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. J Funct Foods 11:528–537

    Article  CAS  Google Scholar 

  • Martens S, Mithofer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    Article  CAS  PubMed  Google Scholar 

  • Massenti R, Lo Bianco R, Sandhu AK, Sims C (2015) Huanglongbing modifies quality components and flavonoid content of “Valencia” oranges. J Sci Food Agric. doi:10.1002/jsfa.7061

  • Meiyanto E, Hermawan A, Anindyajati A (2012) Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev 13:427–436

    Article  PubMed  Google Scholar 

  • Miyata Y, Tanaka H, Shimada A, Sato T, Ito A, Yamanouchi T, Kosano H (2011) Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sci 88:613–618

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Oshitari T, Okuyama Y, Shimada A, Takahashi H, Natsugari H, Kosano H (2013) Polymethoxyflavones as agents that prevent formation of cataract: nobiletin congeners show potent growth inhibitory effects in human lens epithelial cells. Bioorg Med Chem Lett 23:183–187

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam G, Ebrahimi SA, Rahbar-Roshandel N, Foroumadi A (2012) Antiproliferative activity of flavonoids: influence of the sequential methoxylation state of the flavonoid structure. Phytother Res 26:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Spangenberg G (2014) Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front Plant Sci 5:620

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulvihill EE, Huff MW (2012) Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: activation of hepatic PGC1 alpha-mediated fatty acid oxidation. PPAR Res, Art ID857142

  • Mulvihill EE, Assini JM, Lee JK, Allister EM, Sutherland BG, Koppes JB, Sawyez CG, Edwards JY, Telford DE, Charbonneau A, St-Pierre P, Marette A, Huff MW (2011) Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes 60:1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzac I, Wang J, Anzellotti D, Zhang H, Ibrahim RK (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3′-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys 375:385–388

    Article  CAS  PubMed  Google Scholar 

  • Nagashima F, Murakami Y, Asakawa Y (1999) Aromatic compounds from the Ecuadorian liverwort Marchesinia brachiata: a revision. Phytochemistry 51:1101–1104

    Article  CAS  Google Scholar 

  • Nakajima VM, Macedo GA, Macedo JA (2014) Citrus bioactive phenolics: role in the obesity treatment. LWT Food Sci Technol 59:1205–1212

    Article  CAS  Google Scholar 

  • Nes WD (2003) Enzyme mechanisms for sterol C-methylations. Phytochemistry 64:75–95

    Article  CAS  PubMed  Google Scholar 

  • Neves M, Morais R, Gafner S, Hostettmann K (1998) Three triterpenoids and one flavonoid from the liverwort Asterella blumeana grown in vitro. Phytother Res 12:S21–S24

    Article  CAS  Google Scholar 

  • Noel JP, Dixon RA, Pichersky E, Zubieta C, Ferrer JL (2003) Structural, functional, and evolutionary basis for methylation of plant small molecules. Recent Adv Phytochem 37:37–58

    Article  CAS  Google Scholar 

  • Ortuno A, Baidez A, Gomez P, Arcas MC, Porras I, Garcia-Lidon A, Del Rio JA (2006) Citrus paradisi and Citrus sinensis flavonoids: their influence in the defence mechanism against Penicillium digitatum. Food Chem 98:351–358

    Article  CAS  Google Scholar 

  • Ortuno A, Diaz L, Alvarez N, Porras I, Garcia-Lidon A, Del Rio JA (2011) Comparative study of flavonoid and scoparone accumulation in different Citrus species and their susceptibility to Penicillium digitatum. Food Chem 125:232–239

    Article  CAS  Google Scholar 

  • Park YH, Xu XR, Chiou GCY (2004) Structural requirements of flavonoids for increment of ocular blood flow in the rabbit and retinal function recovery in rat eyes. J Ocul Pharmacol Ther 20:189–200

    Article  CAS  PubMed  Google Scholar 

  • Park K-I, Park H-S, Kim M-K, Hong G-E, Nagappan A, Lee H-J, Yumnam S, Lee W-S, Won C-K, Shin S-C, Kim G-S (2014) Flavonoids identified from Korean Citrus aurantium L. inhibit non-small cell lung cancer growth in vivo and in vitro. J Funct Foods 7:287–297

    Article  CAS  Google Scholar 

  • Pichersky E, Sharkey TD, Gershenzon J (2006) Plant volatiles: a lack of function or a lack of knowledge? Trends Plant Sci 11:421

    Article  CAS  PubMed  Google Scholar 

  • Pupin AM, Dennis MJ, Toledo MCF (1998) Polymethoxylated flavones in Brazilian orange juice. Food Chem 63:513–518

    Article  CAS  Google Scholar 

  • Ravanel P, Creuzet S, Tissut M (1990) Inhibitory effect of hydroxyflavones on the exogenous NADH dehydrogenase of plant mitochondrial inner membranes. Phytochemistry 29:441–445

    Article  CAS  Google Scholar 

  • Ruiu S, Anzani N, Orru A, Floris C, Caboni P, Alcaro S, Maccioni E, Distinto S, Cottiglia F (2015) Methoxyflavones from Stachys glutinosa with binding affinity to opioid receptors: in silico, in vitro, and in vivo studies. J Nat Prod 78:69–76

    Article  CAS  PubMed  Google Scholar 

  • Rwangabo PC, Claeys M, Pieters L, Corthout J, Vandenberghe DA, Vlietinck AJ (1988) Umuhengerin, a new antimicrobially active flavonoid from Lantana trifolia. J Nat Prod 51:966–968

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Abe D, Nogata Y (2015) Polymethoxylated flavones potentiate the cytolytic activity of NK leukimia cell line KHYG-1 via enhanced expression of granzyme B. Biochem Biophys Res Commun 456:799–803

    Article  CAS  PubMed  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 280:23735–23740

    Article  CAS  PubMed  Google Scholar 

  • Scalliet G, Piola F, Douady CJ, Rety S, Raymond O, Baudino S, Bordji K, Bendahmane M, Dumas C, Cock JM, Hugueney P (2008) Scent evolution in Chinese roses. Proc Natl Acad Sci USA 105:5927–5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Li C, Shi F, Jones AD, Pichersky E (2011) Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′- and 7/4′-myricetin O-methyltransferases. Plant Physiol 155:1999–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Li C, Jones AD, Pichersky E (2012) Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. Planta 236:839–849

    Article  CAS  PubMed  Google Scholar 

  • Schroder J, Raiber S, Berger T, Schmidt A, Schmidt J, Soares-Sello AM, Bardshiri E, Strack D, Simpson TJ, Veit M, Schroder G (1998) Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry 37:8417–8425

    Article  CAS  PubMed  Google Scholar 

  • Seito LN, Tasca Goiz Ruiz AL, Vendramini-Costa D, Tinti SV, de Carvalho JE, Bastos JK, Di Stasi LC (2011) Antiproliferative activity of three methoxylated flavonoids isolated from Zeyheria montana Mart. (Bignoniaceae) leaves. Phytother Res 25:1447–1450

    Article  CAS  PubMed  Google Scholar 

  • Seitz C, Ameres S, Forkmann G (2007) Identification of the molecular basis for the functional difference between flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase. FEBS Lett 581:3429–3434

    Article  CAS  PubMed  Google Scholar 

  • Silva FL, Moreno PRH, Braz-Filho R, Tavares JF, Barbosa-Filho JM (2014) Chemical constituents of Cardiospermum corindum L. and their distribution in Sapindaceae. Biochem Syst Ecol 57:137–140

    Article  CAS  Google Scholar 

  • Smejkal K (2014) Cytotoxic potential of C-prenylated flavonoids. Phytochem Rev 13:245–275

    Article  CAS  Google Scholar 

  • Souza JPI, Arruda AC, Munoz GD, Arruda MSP, Muller AH (1999) Prenylated flavones from Neoraputia paraensis. Phytochemistry 52:1705–1709

    Article  Google Scholar 

  • Star AE (1980) Frond exudate flavonoids as allelopathic agents in Pityrogramma. Bull Torrey Bot Club 107:146–153

    Article  CAS  Google Scholar 

  • Sundaram R, Shanthi P, Sachdanandam P (2014) Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. Phytomedicine 21:793–799

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Sakano Y, Shimizu K, Shibuya M, Ebizuka Y, Goda Y (2006) Constituents of Laurus nobilis L. inhibit recombinant human lanosterol synthase. J Nat Med 60:78–81

    Article  CAS  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    Article  CAS  Google Scholar 

  • Tian L, Wan S-B, Pan Q-H, Zheng Y-J, Huang W-D (2008) A novel plastid localization of chalcone synthase in developing grape berry. Plant Sci 175:431–436

    Article  CAS  Google Scholar 

  • Tomas-Barberan FA, Wollenweber E (1990) Flavonoid aglycones from the leaf surfaces of some Labiatae species. Plant Syst Evol 173:109–118

    Article  CAS  Google Scholar 

  • Uckoo RM, Jayaprakasha GK, Patil BS (2013) Hyphenated flash chromatographic separation and isolation of coumarins and polymethoxyflavones from byproduct of citrus juice processing industry. Sep Sci Technol 48:1467–1472

    Article  CAS  Google Scholar 

  • Valant-Vetschera KM, Wollenweber E (2006) Flavones and flavonols. In: Andersen OM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, pp 617–748

    Google Scholar 

  • Veitch NC, Grayer REJ (2008) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 25:555–611

    Article  CAS  PubMed  Google Scholar 

  • Veitch NC, Grayer RJ (2011) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 28:1626–1695

    Article  CAS  PubMed  Google Scholar 

  • Viskupicova J, Ondrejovic M, Strudik E (2008) Bioavailability and metabolism of flavonoids. J Food Nutr Res 47:151–162

    CAS  Google Scholar 

  • Vogt T, Ibdah M, Schmidt J, Wray V, Nimtz M, Strack D (1999) Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry 52:583–592

    Article  CAS  PubMed  Google Scholar 

  • Voirin B, Bayet C (1992) Developmental variations in leaf flavonoid aglycones of Mentha × piperita. Phytochemistry 31:2299–2304

    Article  CAS  Google Scholar 

  • Voirin B, Bayet C, Colson M (1993) Demonstration that flavone aglycones accumulate in the peltate glands of Mentha × piperita. Phytochemistry 34:85–87

    Article  CAS  Google Scholar 

  • Voo SS, Grimes HD, Lange BM (2012) Assessing the biosynthetic capabilities of secretory glands in citrus peel. Plant Physiol 159:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walle T (2007a) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17:354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walle T (2007b) Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol Pharm 4:826–832

    Article  CAS  PubMed  Google Scholar 

  • Walle T (2009) Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci 10:5002–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JH, Pichersky E (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch Biochem Biophys 368:172–180

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chen P, Jiang W, Wu L, Chen L, Fan X, Wang Y, Cheng Y (2014) Identification of the effective constituents for anti-inflammatory activity of Ju-Zhi-Jiang-Tang, an ancient traditional Chinese medicine formula. J Chromatogr 1348:105–124

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  CAS  PubMed  Google Scholar 

  • Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    Article  CAS  PubMed  Google Scholar 

  • Willits MG, Giovanni M, Prata RTN, Kramer CM, De Luca V, Steffens JC, Graser G (2004) Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites. Phytochemistry 65:31–41

    Article  CAS  PubMed  Google Scholar 

  • Wils CR, Brandt W, Manke K, Vogt T (2013) A single amino acid determines position specificity of an Arabidopsis thaliana CCoAOMT-like O-methyltransferase. FEBS Lett 587:683–689

    Article  CAS  PubMed  Google Scholar 

  • Winkel BSJ (2006) The biosynthesis of flavonoids. In: Grotewold E (ed) Science of flavonoids. Springer, Berlin, pp 71–95

    Chapter  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenweber E, Doerr M (2008) Flavonoid aglycones from the lipophilic exudates of some species of Rosaceae. Biochem Syst Ecol 36:481–483

    Article  CAS  Google Scholar 

  • Wollenweber E, Roitman JN (1991) New frond exudate flavonoids from Chelantoid ferns. Z Naturforsch C 46:325–330

    CAS  Google Scholar 

  • Wollenweber E, Schneider H (2000) Lipophilic exudates of Pteridaceae—chemistry and chemotaxonomy. Biochem Syst Ecol 28:751–777

    Article  CAS  PubMed  Google Scholar 

  • Wollenweber E, Dorr M, Armbruster S (1993) Flavonoid aglycones as glandular products in Rosa centifolia cv. muscosa and in Rubus phoenicolasius. Z Naturforsch C 48:956–958

    CAS  Google Scholar 

  • Wollenweber E, Dorr M, Rustiyan A (1995) Dorema aucheri, the first umbelliferous plant found to produce exudate flavonoids. Phytochemistry 38:1417

    Article  CAS  Google Scholar 

  • Wollenweber E, Dorr M, Roitman JN (2000) Epicuticular flavonoids of some Scrophulariaceae. Z Naturforsch C 55:5–9

    Article  CAS  PubMed  Google Scholar 

  • Wollenweber E, Dorr M, Rivera D, Roitman JN (2003) Externally accumulated flavonoids in three Mediterranean Ononis species. Z Naturforsch C 58:771–775

    CAS  PubMed  Google Scholar 

  • Wu T, Zang X, He M, Pan S, Xu X (2013) Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem 61:8185–8190

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Hoegger P (2013) Metabolism of dietary flavonoids in liver microsomes. Curr Drug Metab 14:381–391

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Galhano R, Wiemann P, Bueno E, Tiernan M, Wu W, Chung I-M, Gershenzon J, Tudzynski B, Sesma A, Peters RJ (2012) Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol 193:570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J-J, Wu X, Li M-M, Li G-Q, Yang Y-T, Luo H-J, Huang W-H, Chung HY, Ye W-C, Wang G-C, Li Y-L (2014) Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of Citrus reticulata ‘Chachii’. J Agric Food Chem 62:2182–2189

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Li Y, Song M, Fang X, Cao Y, McClements DJ, Xiao H (2014) Improving intracellular uptake of 5-demethyltangeretin by food grade nanoemulsions. Food Res Int 62:98–103

    Article  CAS  Google Scholar 

  • Zubieta C, He XZ, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol 8:271–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by Department of Energy Biological and Environmental Research program (Grant DE-SC0001728 to D.R.G.). We would also like to thank the anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Berim or David R. Gang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berim, A., Gang, D.R. Methoxylated flavones: occurrence, importance, biosynthesis. Phytochem Rev 15, 363–390 (2016). https://doi.org/10.1007/s11101-015-9426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9426-0

Keywords

Navigation