Skip to main content
Log in

IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Indole-3-butyric acid (IBA) is an endogenous auxin that acts in Arabidopsis primarily via its conversion to the principal auxin indole-3-acetic acid (IAA). Genetic and biochemical evidence indicates that this conversion is similar to peroxisomal fatty acid β-oxidation, but the specific enzymes catalyzing IBA β-oxidation have not been identified. We identified an IBA-response mutant (ibr3) with decreased responses to the inhibitory effects of IBA on root elongation or the stimulatory effects of IBA on lateral root formation. However, ibr3 mutants respond normally to other forms of auxin, including IAA. The mutant seedlings germinate and develop normally, even in the absence of sucrose, suggesting that fatty acid β-oxidation is unaffected. Additionally, double mutants between ibr3 and acx3, which is defective in an acyl-CoA oxidase acting in fatty acid β-oxidation, have enhanced IBA resistance, consistent with a distinct role for IBR3. Positional cloning revealed that IBR3 encodes a putative acyl-CoA dehydrogenase with a consensus peroxisomal targeting signal. Based on the singular defect of this mutant in responding to IBA, we propose that IBR3 may act directly in the oxidation of IBA to IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2,4-DB:

2,4-Dichlorophenoxybutyric acid

ACAD:

Acyl-CoA dehydrogenase

ACX:

Acyl-CoA oxidase

APH:

Aminoglycoside phosphotransferase

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

IBR:

IBA-response

IVD:

Isovaleryl-CoA dehydrogenase

JA:

Jasmonic acid

NAA:

1-Naphthaleneacetic acid

PEX:

Peroxin

PTS1:

Peroxisomal targeting signal type 1

References

  • Adham AR, Zolman BK, Millius A, Bartel B (2005) Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in β-oxidation. Plant J 41:859–874

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1999) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Azucena E, Mobashery S (2001) Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat 4:106–117

    Article  PubMed  CAS  Google Scholar 

  • Baker A, Graham I, Holdsworth M, Smith S, Theodoulou F (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11:124–132

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J Plant Growth Regul 20:198–216

    Article  CAS  Google Scholar 

  • Brown GK, Hunt SM, Scholem R, Fowler K, Grimes A, Mercer JFB, Truscott RM, Cotton RGH, Rogers JG, Danks DM (1982) β-Hydroxyisobutrylyl Co-enzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations. Pediatrics 70:532–538

    PubMed  CAS  Google Scholar 

  • Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    PubMed  CAS  Google Scholar 

  • Chaudhury AM, Signer ER (1989) Non-destructive transformation of Arabidopsis. Plant Mol Biol Rep 7:258–265

    Google Scholar 

  • Chhun T, Taketa S, Tsurumi S, Ichii M (2003) The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrt1 of rice (Oryza sativa L.). Plant Growth Regul 39:161–170

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Daigle DM, McKay GA, Thompson PR, Wright GD (1999) Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chem Biol 6:11–18

    Article  PubMed  CAS  Google Scholar 

  • Däschner K, Thalheim C, Guha C, Brennicke A, Binder S (1999) In plants a putative isovaleryl-CoA dehydrogenase is located in mitochondria. Plant Mol Biol 39:1275–1282

    PubMed  Google Scholar 

  • Däschner K, Couee I, Binder S (2001) The mitochondrial isovaleryl-Coenzyme A dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol 126:601–612

    Article  PubMed  Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence and function. Kluwer, Dordrecht

    Google Scholar 

  • De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Graham IA (2000) The multifunctional protein AtMFP2 is co-ordinately expressed with other genes of fatty acid β-oxidation during seed germination in Arabidopsis thaliana (L.) Heynh. Biochem Soc Trans 28:95–99

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Germain V, Lange PR, Bryce JH, Smith SM, Graham IA (2000a) Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA 97:5669–5674

    Article  CAS  Google Scholar 

  • Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, Nussaume L, Graham IA (2000b) Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem 275:34375–34381

    Article  CAS  Google Scholar 

  • Fawcett CH, Wain RL, Wightman F (1960) The metabolism of 3-indolylalkanecarboxylic acids, and their amides, nitriles and methyl esters in plant tissues. Proc R Soc Lond Ser B 152:231–254

    CAS  Google Scholar 

  • Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922

    Article  PubMed  CAS  Google Scholar 

  • Froman BE, Edwards PC, Bursch AG, Dehesh K (2000) ACX3, a novel medium-chain acyl-coenzyme A oxidase from Arabidopsis. Plant Physiol 123:733–741

    Article  PubMed  CAS  Google Scholar 

  • Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation. Plant J 32:93–103

    Article  PubMed  CAS  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16:394–405

    Article  PubMed  CAS  Google Scholar 

  • Germain V, Rylott EL, Larson TR, Sherson SM, Bechntold N, Carde J-P, Bryce JH, Graham IA, Smith SM (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J 28:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ghisla S, Thorpe C (2004) Acyl-CoA dehydrogenases: a mechanistic overview. Eur J Biochem 271:494–508

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41:156–181

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and Molecular Biology of Plant Hormones. Elsevier, Amsterdam, pp 423–459

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT (1990) Plant propagation: principles and practices. Prentice-Hall, Englewood Cliffs, pp 199–245

    Google Scholar 

  • Haughn GW, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434

    Article  CAS  Google Scholar 

  • Hayashi M, Aoki M, Kondo M, Nishimura M (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol 38:759–768

    PubMed  CAS  Google Scholar 

  • Hayashi H, De Bellis L, Yamaguchi K, Kato A, Hayashi M, Nishimura M (1998a) Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J Biol Chem 273:8301–8307

    Article  CAS  Google Scholar 

  • Hayashi M, Toriyama K, Kondo M, Nishimura M (1998b) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxidation. Plant Cell 10:183–195

    Article  CAS  Google Scholar 

  • Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura M (1999) A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J Biol Chem 274:12715–12721

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nito K, Toriyama-Kato K, Kondo M, Yamaya T, Nishimura M (2000) AtPex14p maintains peroxisomal functions by determining protein targeting to three kinds of plant peroxisomes. EMBO J 19:5701–5710

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M (2002) Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation. Plant Cell Physiol 43:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hon W, McKay G, Thompson P, Sweet R, Yang D, Wright G, Berghuis A (1997) Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89:887–895

    Article  PubMed  CAS  Google Scholar 

  • Hooks MA, Fleming Y, Larson TR, Graham IA (1999a) No induction of β-oxidation in leaves of Arabidopsis that over-produce lauric acid. Planta 207:385–392

    Article  CAS  Google Scholar 

  • Hooks MA, Kellas F, Graham IA (1999b) Long-chain acyl-CoA oxidases of Arabidopsis. Plant J 20:1–13

    Article  CAS  Google Scholar 

  • Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M (2003) Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol 44:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Miura R (2004) Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur J Biochem 271:483–493

    Article  PubMed  CAS  Google Scholar 

  • King JJ, Stimart DP (1998) Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L. Heynh. J Hered 89:481–487

    Article  PubMed  CAS  Google Scholar 

  • de Klerk G-J, van der Krieken WM, de Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Google Scholar 

  • Koncz C, Schell J, Rédei GP (1992) T-DNA transformation and insertion mutagenesis. In: Koncz C, Chua N-H, Schell J (eds) Methods in Arabidopsis research. World Scientific, Singapore pp. 224–273

    Google Scholar 

  • Kragler F, Lametschwandtner G, Christmann J, Hartig A, Harada JJ (1998) Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proc Natl Acad Sci USA 95:13336–13341

    Article  PubMed  CAS  Google Scholar 

  • Lange P, Eastmond P, Madagan K, Graham I (2004) An Arabidopsis mutant disrupted in valine catabolism is also compromised in peroxisomal fatty acid beta-oxidation. FEBS Lett 571:147–153

    Article  PubMed  CAS  Google Scholar 

  • LeClere S, Bartel B (2001) A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol Biol 46:695–703

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34: D257–D260

    Article  PubMed  CAS  Google Scholar 

  • Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Article  Google Scholar 

  • Ludwig-Müller J, Epstein E (1993) Analysis of indole-3-butyric acid in Arabidopsis thaliana. Acta Hortic 329:109–111

    Google Scholar 

  • Ludwig-Muller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  • Mackenzie J, Pedersen L, Arent S, Henriksen A (2006) Controlling electron transfer in acyl-coA oxidases and dehydrogenases: a structural view. J Biol Chem 281:31012–31020

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant S (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331

    Article  CAS  Google Scholar 

  • Márton L, Browse J (1991) Facile transformation of Arabidopsis. Plant Cell Rep 10:235–239

    Article  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Chen QG, Overvoorde PJ, Kohler C, Theologis A (1998) Age mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell 10:1649–1662

    Article  PubMed  CAS  Google Scholar 

  • Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872

    Article  PubMed  CAS  Google Scholar 

  • Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B (2004) A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol 135:978–988

    Article  PubMed  CAS  Google Scholar 

  • Reumann S (2002) The photorespiratory pathway of leaf peroxisomes. In: Baker A, Graham IA (eds) Plant peroxisomes: biochemistry, cell biology, and biotechnological applications. Kluwer, The Netherlands, pp 141–189

    Google Scholar 

  • Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135:783–800

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA, Bleecker AB (1999) A defect in β-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1923

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid β-oxidation is essential for embryo development. J Biol Chem 278:21370–21377

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Eastmond PJ, Gilday AD, Slocombe SP, Larson TR, Baker A, Graham IA (2006) The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal β-oxidation is essential for seedling establishment. Plant J 45:930–941

    PubMed  CAS  Google Scholar 

  • Sauter M, Cornell KA, Beszteri S, Rzewuski G (2004) Functional analysis of methylthioribose kinase genes in plants. Plant Physiol 136:4061–4071

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Willmitzer L (1988) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep 7:583–586

    Article  Google Scholar 

  • Seki M, Carninci P, Nishiyama Y, Hayashizaki Y, Shinozaki K (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J 15:707–720

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  PubMed  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722

    Article  PubMed  CAS  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2003) Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-Coenzyme A synthetases. Plant Physiol 132:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Stasinopoulos TC, Hangarter RP (1990) Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol 93:1365–1369

    PubMed  CAS  Google Scholar 

  • Swofford DL (2001) PAUP*. Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic Acid levels are reduced in COMATOSE ATP-Binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    Article  PubMed  CAS  Google Scholar 

  • Wain RL, Wightman F (1954) The growth-regulating activity of certain ω-substituted alkyl carboxylic acids in relation to their β-oxidation within the plant. Proc R Soc Lond Series B 142:525–536

    Article  CAS  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang Z-Y, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Wright GD, Thompson PR (1999) Aminoglycoside phosophotransferases: proteins, structure, and mechanism. Front Biosci 4:d9–d21

    PubMed  CAS  Google Scholar 

  • Ye X, Ji C, Zhou C, Zeng L, Gu S, Ying K, Xie Y, Mao Y (2004) Cloning and characterization of a human cDNA ACAD10 mapped to chromosome 12q24.1. Mol Biol Rep 31:191–195

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156:1323–1337

    PubMed  CAS  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Thompson B, Hawes JW, Krukenberg KA, Matsuda SPT, Bartel B (2001a) chy1, an Arabidopsis mutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase. J Biol Chem 276:31037–31046

    Article  CAS  Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001b) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol 127:1266–1278

    Article  CAS  Google Scholar 

  • Zolman BK, Bartel B (2004) An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci USA 101:1786–1791

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17:3422–3435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ABRC at Ohio State University for seeds, the Salk Institute Genomic Analysis Laboratory for the sequence-indexed Arabidopsis T-DNA insertion mutants, the RIKEN BioResource Center for the full-length IBR3 cDNA clone R18687, and André Andalcio for preliminary mapping of ibr3–11. We are grateful to Naxhiely Martinez, Melanie Monroe-Augustus, Jeanne Rasbery, and Lucia Strader for critical comments on the manuscript. This work was supported by the University of Missouri-St Louis start-up funds, the University of Missouri Research Board, the National Science Foundation (IBN-0315596), and the Robert A. Welch Foundation (C-1309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethany K. Zolman.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM1 (PDF 6,078 kb)

11103_2007_9134_MOESM2_ESM.doc

ACAD domain alignment of IBR3 and IBR3 homologs. IBR3 was compared to similar proteins from Arabidopsis (At), rice (Os), chicken (Gg), humans (Hs), Tetrahymena (Tt), mouse (Mm), Caenorhabditis elegans (Ce), rat (Rn), pig (Ss), and the bacterium Megasphaera elsdenii (Me), using only the ACAD domain for the multidomain proteins and the ACAD domain without the predicted mitochondrial targeting sequences for the other proteins (IVD, SCAD, and MCAD). The alignment was generated in the MegAlign program (DNAStar) using the Clustal W method. Amino acid residues identical in at least seven sequences are shaded in black; chemically similar amino acids are shaded in grey. Hyphens indicate gaps introduced to maximize alignment. The locations of the mutations in ibr3-1 and ibr3-2 are indicated above the sequence by arrows, and the catalytic glutamate residues in Ss MCAD and Hs IVD (Kim and Miura 2004) are indicated below the sequence. This alignment was used to generate the phylogenetic tree shown in Figure 7 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolman, B.K., Nyberg, M. & Bartel, B. IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Mol Biol 64, 59–72 (2007). https://doi.org/10.1007/s11103-007-9134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9134-2

Keywords

Navigation