Skip to main content
Log in

Identification of rose phenylacetaldehyde synthase by functional complementation in yeast

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Rose flowers, like flowers and fruits of many other plants, produce and emit the aromatic volatiles 2-phenylacetaldehyde (PAA) and 2-phenylethylalchohol (PEA) which have a distinctive flowery/rose-like scent. Previous studies in rose have shown that, similar to petunia flowers, PAA is formed from l-phenylalanine via pyridoxal-5′-phosphate-dependent l-aromatic amino acid decarboxylase. Here we demonstrate the use of a Saccharomyces cerevisiae aro10∆ mutant to functionally characterize a Rosa hybrida cv. Fragrance Cloud sequence (RhPAAS) homologous to petunia phenylacetaldehyde synthase (PhPAAS). Volatile headspace analysis of the aro10∆ knockout strain showed that it produces up to eight times less PAA and PEA than the WT. Expression of RhPAAS in aro10∆ complemented the yeast’s mutant phenotype and elevated PAA levels, similar to petunia PhPAAS. PEA production levels were also enhanced in both aro10∆ and WT strains transformed with RhPAAS, implying an application for metabolic engineering of PEA biosynthesis in yeast. Characterization of spatial and temporal RhPAAS transcript accumulation in rose revealed it to be specific to floral tissues, peaking in mature flowers, i.e., coinciding with floral scent production and essentially identical to other rose scent-related genes. RhPAAS transcript, as well as PAA and PEA production in flowers, displayed a daily rhythmic behavior, reaching peak levels during the late afternoon hours. Examination of oscillation of RhPAAS transcript levels under free-running conditions suggested involvement of the endogenous clock in the regulation of RhPAAS expression in rose flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878. doi:10.1104/pp.104.042580

    Article  CAS  PubMed  Google Scholar 

  • Boatright J, Negre F, Chen XL, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011. doi:10.1104/pp.104.045468

    Article  CAS  PubMed  Google Scholar 

  • Brunke EJ, Hammerschmidt FJ, Schmaus G (1992) Scent of roses recent results. Flavour Frag J 7:195–198

    Article  CAS  Google Scholar 

  • Channlière S, Rivière S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38

    Article  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161. doi:10.1101/gad.1411806

    Article  CAS  PubMed  Google Scholar 

  • Clark GS (1990) Phenethyl alcohol. Perfumer Flavor 15:37–44

    CAS  Google Scholar 

  • Cseke LJ, Kaufman PB, Kirakosyan A (2007) The biology of essential oils in the pollination of flowers. Nat Prod Commun 2:1317–1336

    CAS  Google Scholar 

  • Dobres MS (2008) Barriers to genetically engineered ornamentals: an industry perspective. In: da-Silva JAT (ed) Floriculture, ornamental and plant biotechnology. Global Science Books, UK, pp 1–115

    Google Scholar 

  • Dudareva N, Pichersky E (2006) Biology of floral scent. CRC Press-Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961. doi:10.1105/tpc.12.6.949

    Article  CAS  PubMed  Google Scholar 

  • Etschmann MMW, Schrader J (2006) An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Appl Microbiol Biotechnol 71:440–443. doi:10.1007/s00253-005-0281-6

    Article  CAS  PubMed  Google Scholar 

  • Farhi M, Dudareva N, Masci T, Weiss D, Vainstein A, Abeliovich H (2006) Synthesis of the food flavoring methyl benzoate by genetically engineered Saccharomyces cerevisiae. J Biotechnol 122:307–315. doi:10.1016/j.jbiotec.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  • Flament I, Debonneville C, Furrer A (1993) Volatile constituents of roses—characterization of cultivars based on the headspace analysis of living flower emissions. Bioactive Volatile Compd Plants 525:269–281

    Article  CAS  Google Scholar 

  • Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8:242–248. doi:10.1016/j.pbi.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Daugulis AJ (2009) Bioproduction of the aroma compound 2-phenylethanol in a solid-liquid two-phase partitioning bioreactor system by Kluyveromyces marxianus. Biotechnol Bioeng 104:332–339. doi:10.1002/bit.22387

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Guide to yeast genetics and molecular and cell biology. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338. doi:10.1105/tpc.005207

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Yagi K, Ishikawa T, Kawasaki M, Asai T, Picone J, Turnbull C, Hiratake J, Sakata K, Takada M, Ogawa K, Watanabe N (2004) Emission of 2-phenylethanol from its β-D-glucopyranoside and the biogenesis of these compounds from [H-2(8)] l-phenylalanine in rose flowers. Tetrahedron 60:7005–7013. doi:10.1016/j.tet.2003.10.130

    Article  CAS  Google Scholar 

  • Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. doi:10.1128/aem.02625-07

    Article  CAS  PubMed  Google Scholar 

  • Helsper J, Davies JA, Bouwmeester HJ, Krol AF, van Kampen MH (1998) Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95

    Article  CAS  Google Scholar 

  • Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D (2007) Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499. doi:10.1007/s00425-007-0582-3

    Article  CAS  PubMed  Google Scholar 

  • Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield DM, Cooper AJL, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366. doi:10.1074/jbc.M602708200

    Article  CAS  PubMed  Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom LG (1993) Floral scents—a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347. doi:10.1105/tpc.13.10.2333

    Article  CAS  PubMed  Google Scholar 

  • Lavid N, Wang J, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) O-Methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907. doi:10.1104/pp.005330

    Article  CAS  PubMed  Google Scholar 

  • Lavie O (2006) Identification and characterization of genes involved in the biosynthesis of scent volatile phenylacetaldehyde. M.Sc., Thesis, The Hebrew University of Jerusalem

  • Leclercq-Perlat MN, Corrieu G, Spinnler HE (2004) Comparison of volatile compounds produced in model cheese medium deacidified by Debaryomyces hansenii or Kluyveromyces marxianus. J Dairy Sci 87:1545–1550

    Article  CAS  PubMed  Google Scholar 

  • Moyal Ben Zvi M, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A (2008) Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403–415. doi:10.1111/j.1467-7652.2008.00329.x

    Article  CAS  Google Scholar 

  • Pichersky E, Dudareva N (2007) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol 25:105–110

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811. doi:10.1126/science.1118510

    Article  CAS  PubMed  Google Scholar 

  • Picone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CGN (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, NY, pp 159–184

    Google Scholar 

  • Rose USR, Tumlinson JH (2005) Systemic induction of volatile release in cotton: how specific is the signal to herbivory? Planta 222:327–335. doi:10.1007/s00425-005-1528-2

    Article  PubMed  CAS  Google Scholar 

  • Rose M, Kotter P, Hauf J, Entian KD (2003) The yeast strain collection EUROSCARF: a source for useful tools in yeast genetics and molecular biology. Yeast 20:S343

    Article  CAS  Google Scholar 

  • Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N (2007) Production of 2-phenylethanol in roses as the dominant floral scent compound from l-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Biosci Biotechnol Biochem 71:2408–2419

    Article  CAS  PubMed  Google Scholar 

  • Sakai M, Tomita S, Hirata H, Asai T, Dohra H, Hara M, Watanabe N (2008) Purification and characterization of β-glucosidase involved in the emission of 2-phenylethanol from rose flowers. Biosci Biotechnol Biochem 72:219–221

    Article  CAS  PubMed  Google Scholar 

  • Scalliet G, Journot N, Jullien F, Baudino S, Magnard JL, Channeliere S, Vergne P, Dumas C, Bendahmane M, Cock JM, Hugueney P (2002) Biosynthesis of the major scent components 3, 5-dimethoxytoluene and 1, 3, 5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Lett 523:113–118

    Article  CAS  PubMed  Google Scholar 

  • Scalliet G, Piola F, Douady CJ, Rety S, Raymond O, Baudino S, Bordji K, Bendahmane M, Dumas C, Cock JM, Hugueney P (2008) Scent evolution in Chinese roses. Proc Natl Acad Sci USA 105:5927–5932. doi:10.1073/pnas.0711551105

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Lofstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Schuurink RC, Haring MA, Clark DG (2006) Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Plant Sci 11:20–25

    Article  CAS  PubMed  Google Scholar 

  • Shalit M, Shafir S, Larkov O, Bar E, Kaslassi D, Adam Z, Zamir D, Vainstein A, Weiss D, Ravid U, Lewinsohn E (2004) Volatile compounds emitted by rose cultivars: fragrance perception by man and honeybees. Israel J Plant Sci 52:245–255

    Article  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18. doi:10.1093/aob/mcm240

    Article  CAS  PubMed  Google Scholar 

  • Spitzer B, Zvi MMB, Ovadis M, Marhevka E, Barkai O, Edelbaum O, Marton I, Masci T, Alon M, Morin S, Rogachev I, Aharoni A, Vainstein A (2007) Reverse genetics of floral scent: application of Tobacco rattle virus-based gene silencing in Petunia. Plant Physiol 145:1241–1250. doi:10.1104/pp.107.105916

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181. doi:10.1002/bit.21216

    Article  CAS  PubMed  Google Scholar 

  • Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci USA 103:8287–8292. doi:10.1073/pnas.0602469103

    Article  CAS  PubMed  Google Scholar 

  • Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ (2007) Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660–2669. doi:10.1016/j.phytochem.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  • Vainstein A, Lewinsohn E, Weiss D (2006) An integrated genomics approach to identifying floral scent genes in rose. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press-Taylor & Francis Group, Boca Raton, pp 91–102

    Google Scholar 

  • Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17:1612–1624. doi:10.1105/tpc.104.028837

    Article  CAS  PubMed  Google Scholar 

  • Vuralhan Z, Morais MA, Tai S-L, Piper MDW, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541. doi:10.1128/aem.69.8.4534-4541.2003

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Hayashi K, Yagi K, Asai T, Mactavish H, Picone J, Turnbull C, Watanabe N (2002) Biogenesis of 2-phenylethanol in rose flowers: incorporation of [2H8]l-phenylalanine into 2-phenylethanol and its β-D-glucopyranoside during the flower opening of Rosa ‘Hoh-Jun’ and Rosa damascena Mill. Biosci Biotechnol Biochem 66:943–947

    Article  CAS  PubMed  Google Scholar 

  • Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Sakai M, Sayama H, Shimeno T, Yamaguchi K, Watanabe N (2009) Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers. J Plant Physiol 166:887–891

    Article  CAS  PubMed  Google Scholar 

  • Yitzhak E (2004) Genomic approach to studying rose floral scent. M.Sc., thesis, The Hebrew University of Jerusalem

Download references

Acknowledgments

We thank Dr. Shai Morin for assistance in the statistical analyses. This work was funded by Israel Science Foundation grant no. 505/05 to AV. AV is an incumbent of the Wolfson Chair in Floriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vainstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhi, M., Lavie, O., Masci, T. et al. Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol 72, 235–245 (2010). https://doi.org/10.1007/s11103-009-9564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9564-0

Keywords

Navigation