Skip to main content
Log in

Decoding the wheat awn transcriptome and overexpressing TaRca1β in rice for heat stress tolerance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Role of Rubisco Activase in imparting thermotolerance to the photosynthetic apparatus under high temperature. Thus, to improve the grain filling, we need to fine tune these crucial enzymes and their regulation, which directly or indirectly affect spike photosynthesis.

Abstract

CO2 fixation in cereals crops like bread wheat (Triticum aestivum L.) is also contributed by ear photosynthesis beside the other organs like leaves or the flag leaf. 1000-grain weight of three Indian wheat cultivars (cvs.) PBW343, K7903, and HD2329 were calculated under three treatments until maturity stage (i.e. removal of flag leaf, removal of awns and shaded spikes). We observed that awn removal showed a significant decrease in 1000-grain weight in all cultivars. To delve deeper into the biological and molecular pathways taking place underlying the awn physiology, we conducted the awn transcriptome analysis of thermosusceptible Indian wheat cv. PBW343 under heat stress (HS) at 42 °C for 2 h using RNA-sequencing (RNA-seq). Differential expression analysis revealed, 160 transcripts, out of these, 143 transcripts were significantly upregulated and 17 transcripts were repressed under HS conditions. Of these Rca1β was selected for characterization and overexpression studies. Ectopic expression of TaRca1β in rice transgenics indicate a direct correlation with tolerance under HS conditions. TaRca1β provides a better photosynthate energy partitioning under HS with a significant reduction in the non-photochemical fluorescence quenching of the photosynthetic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbad H, Jaafari SE, Bort J, Araus JL (2004) Agronomy for sustainable development. Ital J Agron 24:19–28

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59:1555–1568

    CAS  PubMed  Google Scholar 

  • Andrews S (2010) FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • Araus JL, Brown HR, Febrero A, Bort J, Serret MD (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ 16:383–392

    CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (1985) Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot 36:432–440

    Google Scholar 

  • Bruening PW (2019) Effects of awns on wheat yield and agronomic characterstics evaluated in variety trials. J Crop Variety Test 2:1–5

    Google Scholar 

  • Bruening B, Piersawl M, Swanson S, Connelley J, Olson G, Van Sanford D (2019) Performance of small grain varieties in kentcky. College of Ag, Food and Enviroment, Univ of Kentucky

    Google Scholar 

  • Carmo-Silva AE, Salvucci ME (2013) The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol 161:1645–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38:1817–1832

    CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2010) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51

    PubMed  Google Scholar 

  • Chen G, Bi YR, Li N (2005) EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J 41:364–375

    CAS  PubMed  Google Scholar 

  • Degen GE, Worrall D, Carmo-Silva E (2020) An isoleucine residue acts as a thermal and regulatory switch in wheat Rubisco activase. Plant J 103:742–751

    CAS  PubMed  Google Scholar 

  • Duwayri M (1984) Comparison of wheat cultivars grown in the field under different levels of moisture. Cereal Res Commun 12(1/2):27–34

    Google Scholar 

  • Echevarría-Zomeño S, Fernández-Calvino L, Castro-Sanz AB, López JA, Vázquez J, Castellano MM (2016) Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant Cell Environ 39:1264–1278

    PubMed  Google Scholar 

  • Evans LT, Bingham J, Jackson P, Sutherland J (1972) Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol 70:67–76

    Google Scholar 

  • Evans LT, Wardlaw IF, Fisher RA (1975) Crop physiology some case histories. The University of Chicago, Cambridge, UK

    Google Scholar 

  • Garrido J, Aguilar M, Prieto P (2020) Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Sci Rep 10:2726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebbing T, Schnyder H (1999) Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol 121:871–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Giunta F, Motzo R, Deidda M (2002) SPAD readings and associated leaf traits in durum wheat, barley and triticale cultivars. Euphytica 125:197–205

    CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundbacher FJ (1963) The physiological function of the cereal awn. Bot Rev 29:366–381

    CAS  Google Scholar 

  • Haas BJ, Papanicolao A, Yassour M, Grabherr M, Blood PD, Bowden J et al (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    CAS  PubMed  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P et al (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65:1390–1402

    CAS  PubMed  Google Scholar 

  • Kumar RR, Rai RD (2014) Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.). Cereal Res Commun 42:1–18

    CAS  Google Scholar 

  • Kumar A, Li C, Portis AR (2009) Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res 100:143–153

    CAS  PubMed  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW et al (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  • Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys 386:261–267

    CAS  PubMed  Google Scholar 

  • Li X, Wang H, Li H, Zhang L, Teng N, Lin Q et al (2006) Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiol Plant 127:701–709

    CAS  Google Scholar 

  • Lorimer GH (1981) The carboxylation and events in photosynthesis and photorespiration. Annu Rev Plant Physiol 32:349–383

    CAS  Google Scholar 

  • Lorimer GH, Miziorko HM (1980) Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry 19(23):5321–5328

    CAS  PubMed  Google Scholar 

  • Miller EC, Gauch HG, Gries GA (1944) A study of the morpho- logical nature and physiological function of the awns in winter wheat. Agricultural Experiment Station, Kansas

    Google Scholar 

  • McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300

    Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    CAS  PubMed  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like atpases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    CAS  PubMed  Google Scholar 

  • Neuwirth E (2007) RColorBrewer: ColorBrewer palettes. R package version 11:0–2

  • Nishimura A, Aichi I, Matsuoka M (2007) A protocol for Agrobacterium-mediated transformation in rice. Nat Protoc 1:2796–2802

    Google Scholar 

  • Portis AR (1990) Rubisco activase. Biochim Biophys Acta 1015:15–28

    CAS  PubMed  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E et al (2009) Identification and validation of reference genes for quantitative RT–PCR normalization in wheat. BMC Molecular Biol 10:11

    Google Scholar 

  • Ristic Z, Momilović I, Bukovnik U, Prasad PVV, Fu J, Deridder BP et al (2009) Rubisco activase and wheat productivity under heat-stress conditions. J Exp Bot 60:4003–4014

    CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    PubMed  PubMed Central  Google Scholar 

  • Saghir AR, Khan AR, Worzella WW (1968) Effects of plant parts on the grain yield, kernel weight, and plant height of wheat and barley1. Agron J 60:95–97

    Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    CAS  PubMed  Google Scholar 

  • Sanchez-bragado R, Molero G, Reynolds MP, Araus JL (2014) Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13 C. J Exp Bot 65:5401–5413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scharen AL, Krupinsky JM, Reid DA (1983) Photosynthesis and yield of awned versus awnless isogenic lines of winter barley. Can J Plant Sci 63:349–355

    Google Scholar 

  • Schaller CW, Qualset CO (1975) Isogenic analysis of productivity in Barley: Interaction of genes affecting awn length and leaf-spotting1. Crop Sci 15:378–382

    Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    CAS  PubMed  Google Scholar 

  • Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Hartl FU, Bracher A et al (2011) Structure of green-type Rubisco activase from tobacco. Nat Struct Mol Biol 18:1366–1370

    CAS  PubMed  Google Scholar 

  • Tambussi EA, Bort J, Guiamet JJ, Nogués S, Araus JL (2007) The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci 26:1–16

    CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S et al (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    CAS  PubMed  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw WHA et al (2009) gplots: various R programming tools for plotting data. CRAN 2(4):1

    Google Scholar 

  • Werneke JM, Chatfield JM, Ogren WL (1988) Catalysis of ribulosebisphosphate carboxylase/oxygenase activation by the product of a Rubisco activase cdna clone expressed in Escherichia coli. Plant Physiol 87:917–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zadoks JC, Board E (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Biotechnology and Department of Science &Technology-Fund for Improvement of S&T Infrastructure (DST-FIST), Government of India (Grant No. BT/PR9416/AGR/02/412/2007) for the financial support. We also thanks Dr. Jochen Kumlehn, Leibniz Institute of Plant Genetic and Crop Plant Research (IPK) Gatersleben for providing the IPKb vector set.

Author information

Authors and Affiliations

Authors

Contributions

CK, NS: performed the experiments. CC, PK: written and formatted the manuscript.

Corresponding author

Correspondence to Paramjit Khurana.

Ethics declarations

Conflict of interest

Authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, C., Sharma, N. & Khurana, P. Decoding the wheat awn transcriptome and overexpressing TaRca1β in rice for heat stress tolerance. Plant Mol Biol 105, 133–146 (2021). https://doi.org/10.1007/s11103-020-01073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01073-0

Keywords

Navigation