Skip to main content

Advertisement

Log in

Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K Bunzl R Kretner P Schramel M Szeles R Winkler (1995) ArticleTitleSpeciation of 238U, 226Ra, 210Pb, 228Ra, and stable Pb in the soil near an exhaust ventilating shaft of a uranium mine Geoderma 67 45–53 Occurrence Handle10.1016/0016-7061(94)00032-6 Occurrence Handle1:CAS:528:DyaK2MXntV2rtLw%3D

    Article  CAS  Google Scholar 

  • B D Chen P Christie X L Li (2001) ArticleTitleA modified glass bead compartment cultivation system for studies on nutrient uptake by arbuscular mycorrhiza Chemosphere 42 185–192 Occurrence Handle11237297 Occurrence Handle1:CAS:528:DC%2BD3cXmvFymt7Y%3D Occurrence Handle000089930600011

    PubMed  CAS  ISI  Google Scholar 

  • B D Chen I Jakobsen P Roos O K Borggaard Y G Zhu (2005) ArticleTitleMycorrhiza and root hairs enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer New Phytol. 165 591–598 Occurrence Handle15720669 Occurrence Handle1:CAS:528:DC%2BD2MXhsFOhtbo%3D

    PubMed  CAS  Google Scholar 

  • M D Campbell K T Biddle (1977) Frontier areas and exploration techniques. Frontier uranium exploration in the south-central United States M D Campbell (Eds) Geology of Alternate Energy Resources Houston Geological society Houston, Texas 3–44

    Google Scholar 

  • L Ciavatta D Ferri I Grenthe F Salvatore (1981) ArticleTitleThe first acidification step of the tris(carbonate)dioxourantantate(VI) ion, UO2(CO3) 4−3 J. Inorg. Chem. 20 463–467 Occurrence Handle10.1021/ic50216a029 Occurrence Handle1:CAS:528:DyaL3MXnsFyqsA%3D%3D

    Article  CAS  Google Scholar 

  • M C Duff C Amrhein (1996) ArticleTitleUranium (VI) adsorption on goethite and soil in soil carbonate solutions Soil Sci. Soc. Am. J. 60 1393–1400 Occurrence Handle1:CAS:528:DyaK28XlvFCjt7c%3D Occurrence Handle10.2136/sssaj1996.03615995006000050014x

    Article  CAS  Google Scholar 

  • S Dushenkov (2003) ArticleTitleTrends in phytoremediation of radionuclides Plant Soil 249 167–175 Occurrence Handle10.1023/A:1022527207359 Occurrence Handle1:CAS:528:DC%2BD3sXhsVyrsr8%3D

    Article  CAS  Google Scholar 

  • S D Ebbs D J Brady L V Kochian (1998) ArticleTitleRole of uranium speciation in the uptake and translocation of uranium by plants J. Exp. Bot. 49 1183–1190 Occurrence Handle10.1093/jexbot/49.324.1183 Occurrence Handle1:CAS:528:DyaK1cXltFGgs7w%3D

    Article  CAS  Google Scholar 

  • R J Fellows C C Ainsworth C J Driver D A Catoldo (1998 ) Dynamics and transformation of radionuclides in soils and ecosystem health WI Madison (Eds) Soil Chemistry and Ecosystem Health Soil Sci. Soc. Am. USA 85–131

    Google Scholar 

  • A J Francis C J Dodge (1998) ArticleTitleRemediation of soils and wastes contaminated with uranium and toxic metals Environ. Sci. Technol. 32 3993–3998 Occurrence Handle10.1021/es9803310 Occurrence Handle1:CAS:528:DyaK1cXmslyisrg%3D

    Article  CAS  Google Scholar 

  • GenStat Committee 2002 The guide to GenStat (release 6.1). Part 1: Syntax and data management. Payne RW, VSN International, Hemel Hempstead, UK

  • I Grenthe J Fuger R Konings RJ Lemire AB Muller C Nguyen-Trung J Wanner (1992) The Chemical Thermodynamics of Uranium Elsevier New York

    Google Scholar 

  • J W Huang M J Blaylock Y Kapulnik B D Ensley (1998) ArticleTitlePhytoremediation of uranium- contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants Environ. Sci. Technol. 32 2004–2008 Occurrence Handle1:CAS:528:DyaK1cXjt1Gns78%3D

    CAS  Google Scholar 

  • I Jakobsen L K Abbott A D Robson (1992) ArticleTitleExternal hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterranum L. (1) Spread of hyphae and phosphorus inflow into roots New Phytol. 120 371–380 Occurrence Handle1:CAS:528:DyaK38XisFClu7o%3D

    CAS  Google Scholar 

  • I Jakobsen N E Nielsen (1983) ArticleTitleVesicular arbuscular mycorrhiza in field grown crops I. Mycorrhizal infection in cereals and peas at various times and soil depths New Phytol 93 401–413 Occurrence HandleA1983QM86400005

    ISI  Google Scholar 

  • J L Jerden SuffixJr A K Sinha L Zelazny (2003) ArticleTitleNatural immobilization of uranium by phosphate mineralization in an oxidizing saprolite–soil profile: chemical weathering of the Coles Hill uranium deposit, Virginia Chem. Geol. 199 129–157 Occurrence Handle1:CAS:528:DC%2BD3sXktVehu70%3D

    CAS  Google Scholar 

  • E J Joner R Briones C Leyval (2000) ArticleTitleMetal-binding capacity of arbuscular mycorrhizal mycelium Plant Soil 226 227–234 Occurrence Handle1:CAS:528:DC%2BD3MXotVGgug%3D%3D

    CAS  Google Scholar 

  • D Langmuir (1978) ArticleTitleUranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits Geoch. Cosmoch. Acta 42 547–569 Occurrence Handle10.1016/0016-7037(78)90001-7 Occurrence Handle1:CAS:528:DyaE1MXht1Cktr4%3D

    Article  CAS  Google Scholar 

  • C Leyval E J Joner C Val Particledel K Haselwandter (2002) Potential of arbuscular mycorrhizal fungi for bioremediation S Gianinazzi H Schüepp J M Barea K Haselwandter (Eds) Mycorrhizal Technology in Agriculture Birkhäuser Verlag Basel Switzerland 175–186

    Google Scholar 

  • X L Li E Geoege H Marschner (1991) ArticleTitleExtension of the phosphorus depletion zone in VAM white clover in a calcareous soil Plant soil 136 41–48

    Google Scholar 

  • J J Mortvedt (1994) ArticleTitlePlant and soil relationships of uranium and thorium decay series radionuclides - a review J Environ. Qual. 23 643–650 Occurrence Handle1:CAS:528:DyaK2cXltVeisr0%3D Occurrence Handle10.2134/jeq1994.00472425002300040004x

    Article  CAS  Google Scholar 

  • J N Pearson I Jakobsen (1993) ArticleTitleThe relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32P and 33P New Phytol. 124 489–494 Occurrence Handle1:CAS:528:DyaK2cXhtleit7s%3D

    CAS  Google Scholar 

  • J M Phillips D S Hayman (1970) ArticleTitleImproved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection Trans. Br. Mycol. Soc. 55 158–161 Occurrence Handle10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  • G Rufyikiri Y Thiry S Declerck (2003) ArticleTitleContribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions New Phytol. 158 391–399 Occurrence Handle10.1046/j.1469-8137.2003.00747.x Occurrence Handle1:CAS:528:DC%2BD3sXktVSqsrY%3D

    Article  CAS  Google Scholar 

  • G Rufyikiri Y Thiry L Wang B Delvaux S Declerck (2002) ArticleTitleUranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions New Phytol. 156 275–281 Occurrence Handle10.1046/j.1469-8137.2002.00520.x Occurrence Handle1:CAS:528:DC%2BD38XovFGqsrg%3D

    Article  CAS  Google Scholar 

  • G Rufyikiri S Declerck Y Thiry (2004a) ArticleTitleComparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions Mycorrhiza 14 203–207 Occurrence Handle10.1007/s00572-003-0258-1 Occurrence Handle000222025100007

    Article  ISI  Google Scholar 

  • G Rufyikiri L Huysmans J Wannijn M Hees ParticleVan C Leyval I Jakobsen (2004b) ArticleTitleArbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil Environ. Pollut. 130 427–436 Occurrence Handle10.1016/j.envpol.2003.12.021 Occurrence Handle1:CAS:528:DC%2BD2cXks1ertLY%3D

    Article  CAS  Google Scholar 

  • M R Saric M Stojanovic M Babic (1995) ArticleTitleUranium in plant species grown on natural barren soil J. Plant Nutri. 18 1509–1518 Occurrence Handle1:CAS:528:DyaK2MXmt12gs7o%3D Occurrence Handle10.1080/01904169509364999

    Article  CAS  Google Scholar 

  • H Shahandeh L R Hossner (2002) ArticleTitleEnhancement of uranium phytoaccumulation from contaminated soils Soil Sci. 167 269–280 Occurrence Handle10.1097/00010694-200204000-00004 Occurrence Handle1:CAS:528:DC%2BD38XjsVSlsbs%3D

    Article  CAS  Google Scholar 

  • H Shahandeh J H Lee L R Hossner R H Loeppert (2001) Bioavailability of uranium and plutonium to plants in soil–water systems and the potential of phytoremediation G R Gobran W W Wenzel E Lombi (Eds) Trace Elements in the Rhizosphere CRC Press LLC London, UK 93–124

    Google Scholar 

  • M I Sheppard D H Thibault (1984) ArticleTitleNatural uranium concentrations of native plants over a low-grade ore body Can. J. Bot. 62 1069–1075 Occurrence Handle1:CAS:528:DyaL2cXksFWksbk%3D Occurrence Handle10.1139/b84-147

    Article  CAS  Google Scholar 

  • M I Sheppard D H Thibault (1992) ArticleTitleDesorption and extraction of selected heavy metals from soils Soil Sci. Soc. Am. J. 56 415–423 Occurrence Handle1:CAS:528:DyaK38Xkt1Gnt7g%3D Occurrence Handle10.2136/sssaj1992.03615995005600020012x

    Article  CAS  Google Scholar 

  • S E Smith S J Barker (2002) ArticleTitlePlant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosis Trends Plant Sci. 7 189–190 Occurrence Handle11992818 Occurrence Handle1:CAS:528:DC%2BD38Xjtl2ktrs%3D

    PubMed  CAS  Google Scholar 

  • S E Smith D J Read (1997) Mycorrhizal Symbiosis EditionNumber2 Academic Press London, UK

    Google Scholar 

  • S E Smith F A Smith (1990) ArticleTitleStructure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport New Phytol. 114 1–38 Occurrence Handle1:CAS:528:DyaK3cXhsFGitLw%3D

    CAS  Google Scholar 

  • S E Smith F A Smith I Jakobsen (2003) ArticleTitleMycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses Plant Physiol. 133 16–20 Occurrence Handle10.1104/pp.103.024380 Occurrence Handle12970469 Occurrence Handle1:CAS:528:DC%2BD3sXntlait7o%3D

    Article  PubMed  CAS  Google Scholar 

  • N Viereck P E Hansen I Jakobsen (2004) ArticleTitlePhosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy New Phytol. 162 783–794 Occurrence Handle10.1111/j.1469-8137.2004.01048.x Occurrence Handle1:CAS:528:DC%2BD2cXltlyrsrY%3D

    Article  CAS  Google Scholar 

  • I M Weiersbye C J Straker W J Przybylowicz (1999) ArticleTitleMicro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings Nucl. Instru. Meth. Phys. Res. B 158 335–343 Occurrence Handle1:CAS:528:DyaK1MXnvFWmsb4%3D

    CAS  Google Scholar 

  • S N Whiting R D Reeves D Richards M S Johnson J A Cooke F Malaisse A Paton J A C Smith J S Angle R L Chaney R Ginocchio T Jaffré R Johns T McIntyre O W Purvis D E Salt H Schat F J Zhao A J M Baker (2004) ArticleTitleResearch priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation Res. Ecol. 12 106–116

    Google Scholar 

  • L C Xu Y X Wang J W Liu X S Lu Y C Liu X Y Liu (2002) ArticleTitleRadioactive contamiantion of the environment as a result of uranium production: a case study at the abandoned Lincang uranium mine, Yunnan Province, China Sci China (B) 45 11–19 Occurrence Handle1:CAS:528:DC%2BD3sXitlOgu70%3D

    CAS  Google Scholar 

  • Y-G Zhu G Shaw (2000) ArticleTitleSoil contamination with radionuclides and potential remediation Chemosphere 41 121–128 Occurrence Handle10819188 Occurrence Handle1:CAS:528:DC%2BD3cXivFKksLk%3D Occurrence Handle000086786500017

    PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Guan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Jakobsen, I., Roos, P. et al. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275, 349–359 (2005). https://doi.org/10.1007/s11104-005-2888-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-2888-x

Keywords

Navigation