Skip to main content
Log in

Evaluation of angiosperm and fern contributions to soil organic matter using two methods of pyrolysis-gas chromatography-mass spectrometry

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Ferns are an important plant group, and older phylogenies of non-polypod ferns contain relatively high concentrations of aliphatic leaf waxes, lignins, and tannins that could contribute to soil organic matter (SOM) biochemistry and stability.

Methods

Pyrolysis gas-chromatography mass-spectrometry (py-GC/MS) analyzes biochemical fragments which can be related to lignin, polysaccharide, lipid, nitrogen (N)-bearing, non-lignin aromatics, and phenol source compounds. Thermochemolysis using tetramethylammonium hydroxide (TMAH) combined with py-GC/MS improves detection of lignin, cutin, and suberin-derived compounds. To examine the advantages and disadvantages of both methods for characterizing plant and soil biochemistry, we characterized non-polypod and polypod fern and angiosperm live tissues, roots and soils from the Kohala Mountains, Hawaii.

Results

Py-GC/MS provided a broad biochemical overview of compound groups including lignin, polysaccharide, lipid, N-bearing, non-lignin aromatics and phenol groups while TMAH-py-GC/MS detailed lignin units and fatty acids at the expense of the other categories. TMAH-py-GC/MS provided more detailed data on lignin, cutin, suberin and tannin-derived compounds. Both methods detected differences in lignin units between species, although p-coumaric and ferulic acids, predominantly found in ferns, were only observed with TMAH-py-GC/MS.

Conclusions

Both py-GC/MS and TMAH-py-GC/MS are methods to detect compound-specific plant biomarkers, but are most useful when combined for their complimentary results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almendros G, Zancada MC, Gonzalez-Vila FJ, Lesiak MA, Alvarez-Ramis C (2005) Molecular features of fossil organic matter in remains of the lower cretaceous fern Weichselia reticulata from Przenosza basement (Poland). Org Geochem 36:1108–1115

    Article  CAS  Google Scholar 

  • Amatangelo KL, Vitousek PM (2009) Contrasting predictors of fern versus angiosperm decomposition in a common garden. Biotropica 41:154–161

    Article  Google Scholar 

  • Bahri H, Dignac MF, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988

    Article  CAS  Google Scholar 

  • Baldock JA, Masiello CA, Gelinas Y, Hedges JI (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64

    Article  CAS  Google Scholar 

  • Bracewell JM, Robertson GW (1984) Quantitative comparison of the nitrogen-containing pyrolysis products and amino acid composition of soil humic acids. J Anal Appl Pyrol 6:19–29

    Article  CAS  Google Scholar 

  • Bracewell JM, Robertson GW (1987) Characteristics of soil organic-matter in temperate soils by curie-point pyrolysis-mass spectrometry. The effect of drainage and illuviation in B-horizons. J Soil Sci 38:191–198

    Article  CAS  Google Scholar 

  • Buurman P, Peterse F, Martin GA (2007) Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci 58:1330–1347

    Article  CAS  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497

    Article  CAS  Google Scholar 

  • Chefetz B, Chen Y, Clapp CE, Hatcher PG (2000) Characterization of organic matter in soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci Soc Am J 64:583–589

    Article  CAS  Google Scholar 

  • Chefetz B, Tarchitzky J, Deshmukh AP, Hatcher PG, Chen Y (2002) Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J 66:129–141

    Article  CAS  Google Scholar 

  • Chiavari G, Galletti GC (1992) Pyrolysis-gas chromatography mass-spectrometry of amino-acids. J Anal Appl Pyrol 24:123–137

    Article  CAS  Google Scholar 

  • del Rio JC, McKinney DE, Knicker H, Nanny MA, Minard RD, Hatcher PG (1998) Structural characterization of bio- and geo-macromolecules by off-line thermochemolysis with tetramethylammonium hydroxide. J Chromatogr A 823:433–448

    Article  Google Scholar 

  • del Rio JC, Gutierrez A, Rodriguez IM, Ibarra D, Martinez AT (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FTIR. J Anal Appl Pyrol 79:39–46

    Article  Google Scholar 

  • Faix O, Meier D, Grobe I (1987) Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection. J Anal Appl Pyrol 11:403–416

    Article  CAS  Google Scholar 

  • Faix O, Meier D, Fortmann I (1988) Pyrolysis-gas chromatography-mass spectrometry of two trimeric lignin model compounds with alkyl-aryl ether structure. J Anal Appl Pyrol 14:135–148

    Article  CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124

    Article  CAS  Google Scholar 

  • Filley TR, Nierop KGJ, Wang Y (2006) The contribution of polyhydroxyl aromatic compounds to tetramethylammonium hydroxide lignin-based proxies. Org Geochem 37:711–727

    Article  CAS  Google Scholar 

  • Galletti GC, Bocchini P, Guadalix ME, Almendros G, Camarero S, Martinez AT (1997) Pyrolysis products as markers in the chemical characterization of paperboards from waste paper and wheat straw pulps. Bioresource Technol 60:51–58

    Article  CAS  Google Scholar 

  • Gallois N, Tempher J, Derenne S (2007) Pyrolysis-gas chromatography-mass spectrometry of the 20 protein amino acids in the presence of TMAH. J Anal Appl Pyrol 80:216–230

    Article  CAS  Google Scholar 

  • Gauthier A, Derenne S, Dupont L, Guillon E, Largeau C, Dumonceau J, Aplincourt M (2002) Characterization and comparison of two ligno-cellulosic substrates by C-13 CP/MAS NMR, XPS, conventional pyrolysis and thermochemolysis. Anal Bioanal Chem 373:830–838

    Article  PubMed  CAS  Google Scholar 

  • Gleixner G, Bol R, Balesdent J (1999) Molecular insight into soil carbon turnover. Rapid Commun Mass Sp 13:1278–1283

    Article  CAS  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Goni MA, Hedges JI (1990) Cutin-derived CuO reaction-products from purified cuticles and tree leaves. Geochim Cosmochim Ac 54(11):3065–3072

    Article  CAS  Google Scholar 

  • Gonzalez-Perez JA, Arbelo CD, Gonzalez-Vila FJ, Rodriguez AR, Almendros G, Armas CM, Polvillo O (2007) Molecular features of organic matter in diagnostic horizons from andosols as seen by analytical pyrolysis. J Anal Appl Pyrol 80:369–382

    Article  CAS  Google Scholar 

  • Gupta NS, Briggs DEG, Collinson ME, Evershed RP, Michels R, Jack KS, Pancost RD (2007) Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: implications for organic matter preservation. Org Geochem 38:499–522

    Article  CAS  Google Scholar 

  • Gutierrez A, Martinez MJ, Almendros G, Gonzalezvila FJ, Martinez AT (1995) Hyphal-sheath polysaccharides in fungal deterioration. Sci Total Environ 167:315–328

    Article  CAS  Google Scholar 

  • Hatcher PG, Nanny MA, Minard RD, Dible SD, Carson DM (1995) Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23:881–888

    Article  CAS  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178

    Article  CAS  Google Scholar 

  • Hempfling R, Schulten HR (1990) Chemical characterization of the organic-matter in forest soils by Curie-point pyrolysis GC MS and pyrolysis field-ionization mass spectrometry. Org Geochem 15:131–145

    Article  CAS  Google Scholar 

  • Holloway PJ (1982) The chemical constitution of plant cutins. In: Cutler DF, Alvin KL, Price CE The Plant Cuticle. Academic Press, pp 45–85

  • Kaal J, Baldock JA, Buurman P, Nierop KGJ, Pontevedra-Pombal X, Martinez-Cortizas A (2007) Evaluating pyrolysis-GC/MS and C-13 CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain. Org Geochem 38:1097–1111

    Article  CAS  Google Scholar 

  • Klingberg A, Odermatt J, Meier D (2005) Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide. J Anal Appl Pyrol 74:104–109

    Article  CAS  Google Scholar 

  • Kogel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  CAS  Google Scholar 

  • Lichtfouse E, Chenu C, Baudin F, Leblond C, Da Silva M, Behar F, Derenne S, Largeau C, Wehrung P, Albrecht P (1998) A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence. Org Geochem 28:411–415

    Article  CAS  Google Scholar 

  • Lyons PC, Orem WH, Mastalerz M, Zodrow EL, Viethredemann A, Bustin RM (1995) C-13 Nmr, Micro-Ftir and fluorescence-spectra, and pyrolysis-gas chromatograms of coalified foliage of late carboniferous medullosan seed ferns, Nova-Scotia, Canada—implications for coalification and chemotaxonomy. Int J Coal Geol 27:227–248

    Article  CAS  Google Scholar 

  • Moldoveanu S (1998) Analytical pyrolysis of natural organic polymers. Techniques and instrumentation in analytical chemistry, vol 20, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Naafs DFW, van Bergen PF (2002) A qualitative study on the chemical composition of ester-bound moieties in an acidic andosolic forest soil. Org Geochem 33:189–199

    Article  CAS  Google Scholar 

  • Naafs DFW, van Bergen PF, Boogert SJ, de Leeuw JW (2004) Solvent-extractable lipids in an acid andic forest soil; variations with depth and season. Soil Biol Biochem 36:297–308

    Article  CAS  Google Scholar 

  • Naafs DFW, Nierop KGJ, van Bergen PF, de Leeuw JW (2005) Changes in the molecular composition of ester-bound aliphatics with depth in an acid andic forest soil. Geoderma 127:130–136

    Article  CAS  Google Scholar 

  • Nierop KGJ, Filley TR (2007) Assessment of lignin and (poly-)phenol transformations in oak (Quercus robur) dominated soils by C-13-TMAH thermochemolysis. Org Geochem 38:551–565

    Article  CAS  Google Scholar 

  • Nierop KGJ, Filley TR (2008) Simultaneous analysis of tannin and lignin signatures in soils by thermally assisted hydrolysis and methylation using C-13-labeled TMAH. J Anal Appl Pyrol 83(2):227–231

    Article  CAS  Google Scholar 

  • Nierop KGJ, Jansen B (2009) Extensive transformation of organic matter and excellent lipid preservation at the upper, superhumid Guandera paramo. Geoderma 151(3–4):357–369

    Article  CAS  Google Scholar 

  • Nierop KGJ, van Lagen B, Buurman P (2001) Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma 100(1–2):1–24

    Article  CAS  Google Scholar 

  • Nierop KGJ, Preston CM, Kaal J (2005) Thermally assisted hydrolysis and methylation of purified tannins from plants. Anal Chem 77:5604–5614

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164:165–174

    Article  CAS  Google Scholar 

  • Raab TK, Amatangelo KL, Vitousek PM (in review) Biochemical diversity among Hawaiian ferns, tree ferns and angiosperms: Implications for life-forms and nutrient retention. Journal of Ecology

  • Ros LVG, Aznar-Asensio GJ, Hernandez JA, Bernal MA, Nunez-Flores MJL, Cuello J, Barcelo AR (2007) Structural motifs of syringyl peroxidases are conserved during angiosperm evolution. J Agr Food Chem 55:4131–4138

    Article  Google Scholar 

  • Rumpel C, Kögel-Knaber I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Russell AE, Vitousek PM (1997) Decomposition and potential nitrogen fixation in Dicranopteris linearis litter on Mauna Loa, Hawai’i. J Trop Ecol 13:579–594

    Article  Google Scholar 

  • Saiz Jimenez C (1994) Analytical pyrolysis of humic substances—pitfalls, limitations, and possible solutions. Environ Sci Tech 28:1773–1780

    Article  CAS  Google Scholar 

  • Saiz Jimenez C, Deleeuw JW (1986) Lignin pyrolysis products—their structures and their significance as biomarkers. Org Geochem 10:869–876

    Article  CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1990) Aliphatics in soil organic-matter in fine-clay fractions. Soil Sci Soc Am J 54:98–105

    Article  CAS  Google Scholar 

  • Steinbeiss S, Schmidt CM, Heide K, Gleixner G (2006) Delta C-13 values of pyrolysis products from cellulose and lignin represent the isotope content of their precursors. J Anal Appl Pyrol 75:19–26

    Article  CAS  Google Scholar 

  • Stewart CE, Neff J, Amatangelo K, Vitousek P (2011) Vegetation effects on soil organic matter chemistry in a Hawaiian forest. Ecosystems 14:382–397

    Article  CAS  Google Scholar 

  • Trumbore SE, Czimczik CI (2008) Geology—an uncertain future for soil carbon. Science 321:1455–1456

    Article  PubMed  CAS  Google Scholar 

  • Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions—a pyrolysis-GC/MS study. Soil Biol Biochem 41:568–579

    Article  CAS  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton environmental institute series. Princeton University Press, Princeton

    Google Scholar 

  • Vitousek PM, Turner DR, Kitayama K (1995) Foliar nutrients during long-term soil development in Hawaiian Montane rain-forest. Ecology 76:712–720

    Article  Google Scholar 

  • von Lutzow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Wollenweber E, Schneider H (2000) Lipophilic exudates of Pteridaceae—chemistry and chemotaxonomy. Biochem Syst Ecol 28:751–777

    Article  PubMed  CAS  Google Scholar 

  • Zodrow EL, Mastalerz M (2002) FTIR and py-GC-MS spectra of true-fern and seed-fern sphenopterids (Sydney Coalfield, Nova Scotia, Canada, Pennsylvanian). Int J Coal Geol 51:111–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Jason Neff, Karolien Denef, Liz Pruessner, Abigail Stewart, Brendan Young as well as two anonymous reviewers for comments on earlier versions of this manuscript. Daniel Fernandez gave invaluable help with the py-GC/MS instrument and Cody Flagg for sample preparation. I also wish to thank Heraldo Farrington, Ted Raab, and Rebecca Funk for assistance with field sampling. This work was funded by the University of Colorado Chancellor’s Postdoctoral Fellowship and NSF DEB-0515918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Stewart.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

Library of py-GC/MS products used to identify live, root, and soil samples for Cibotium, Dicranopteris, Diplazium, Cheirodendron and Metrosideros. All spectra were identified from primary ions based on literature (Buurman et al. 2007; Chefetz et al. 2000; Chefetz et al. 2002; Chiavari and Galletti 1992; Faix et al. 1987; Gallois et al. 2007; Gleixner et al. 2002; Gonzalez-Perez et al. 2007; Steinbeiss et al. 2006) and external standards (PDF 131 kb)

Esm 2

Library of TMAH-py-GC/MS products used to identify py-GC/MS samples live, root, and soil samples for Cibotium, Dicranopteris, Diplazium, Cheirodendron and Metrosideros. All spectra were identified from primary ions based on literature (Chefetz et al. 2002; del Rio et al. 2007; Filley et al. 2006; Gleixner et al. 2002; Nierop et al. 2005) and external standards (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, C.E. Evaluation of angiosperm and fern contributions to soil organic matter using two methods of pyrolysis-gas chromatography-mass spectrometry. Plant Soil 351, 31–46 (2012). https://doi.org/10.1007/s11104-011-0927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0927-3

Keywords

Navigation