Skip to main content

Advertisement

Log in

Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Repeated planting of the same or closely-related crop species often results in negative soil feedbacks, manifested as reduced plant growth. This is commonly attributed to accumulation of plant pathogenic organisms, but there is increasing evidence that other microbes may contribute as well. Since individual members of the bacterial soil microbiome display distinct preferences for specific root exudates, we hypothesize that enrichment of a small subset of bacterial species in the rhizosphere by monocropping will decrease overall diversity and thus negatively influence the performance of the crop.

Methods

To test this, we examined soil feedbacks for peanut plants inoculated with bacterial suspensions obtained from monocropped and rotated plots in closed cultivation systems.

Results

Partial 16S rRNA gene amplicon sequence analysis revealed significant effects of cropping system on the bacterial composition of peanut rhizospheres. When added to peanut seedling rhizospheres, soil suspensions derived from monocropped plots produced a significant reduction in rhizosphere microbiome species richness (number of OTUs). And, bacterial species including Sphingomonas sp., Herbaspirillum sp., and Arthrobacter sp. were enriched in peanut rhizosphere. However, monocropping-derived soil suspension inoculants showed significant deleterious effects on peanut development compared to rotation-derived inoculants. Further bioassays determined that some enriched bacterial strains that were isolated from the monocropping treatment repressed peanut hypocotyl extension.

Conclusions

Our results suggest that bacterial composition assembly in peanut rhizosphere in monocropping system especially that enriches particular deleterious bacterial taxa could lead to clear reductions in plant performance even in the absence of disease or signs of pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. PNAS 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363(1–2):345–356

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA (2016) Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91

    Article  Google Scholar 

  • Barra PJ, Inostroza NG, Mora ML, Crowley DE, Jorquera MA (2017) Bacterial consortia inoculation mitigates the water shortage and salt stress in an avocado (Persea americana Mill.) nursery. Appl Soil Ecol 111:39–47

    Article  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53(2):306–316

    Article  CAS  PubMed  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl MicrobiolM Biot 84:11–18

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microb Ecol 51(2):215–229

    Article  CAS  Google Scholar 

  • Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011a) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77(3):1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011b) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaurio R, Stravato VM, Kosako Y, Fujiwara N, Naka T, Kobayashi K et al (2002) Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Systemat Evol Micr 52(6):2081–2087

    CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS. 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012) Ultrahigh-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon ZG, Whitbeck JL (2007) The rhizosphere: An ecological perspective. Elsevier/Academic, New York

    Google Scholar 

  • Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VC et al (2018) Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J 12:2307–2321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Dawson W, Hör J, Egert M, Kleunen MV, Pester M (2017) A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization. Front Microbiol 8:975

    Article  PubMed  PubMed Central  Google Scholar 

  • De Boer W, Hundscheid MPJ, Klein Gunnewiek PJA, De Ridder-Duine AS, Thion C, van Veen JA, Van der Wal A (2015) Antifungal rhizosphere bacteria can increase as response to the presence of saprotrophic fungi. PLoS One 10(9):e0137988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Boer W, Li XG, Meisner A, Garbeva P (2019) Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 95(8):fiz105

    Article  PubMed  CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbial Ecol 72(3):313–327

    Article  CAS  Google Scholar 

  • Duineveld BM, Rosado AS, van Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64(12):4950–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364

    Article  PubMed  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. PNAS 115:E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Expósito RG, de Bruijn I, Postma J, Raaijmakers JM (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8:2529

  • Gomila M, Gasco J, Busquets A, Gil J, Bernabeu R, Buades JM, Lalucat J (2005) Identification of culturable bacteria present in haemodialysis water and fluid. FEMS Microbiol Ecol 52(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2(12):1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Lemanceau P, Prosser JI (2008) Multitrophic interactions in the rhizosphere. Rhizosphere microbiology: at the interface of many disciplines and expertises. FEMS Microbiol Ecol 65:179

    Article  CAS  PubMed  Google Scholar 

  • Hol WG, De Boer W, Termorshuizen AJ, Meyer KM, Schneider JH, Van Dam NM et al (2010) Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett 13(3):292–301

    Article  PubMed  Google Scholar 

  • Hol WG, Garbeva P, Hordijk C, Hundscheid MP, Gunnewiek PJK, Van Agtmaal M et al (2015) Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96(8):2042–2048

    Article  PubMed  Google Scholar 

  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39(2):232–242

    Article  CAS  PubMed  Google Scholar 

  • Jousset A, Becker J, Chatterjee S, Karlovsky P, Scheu S, Eisenhauer N (2014) Biodiversity and species identity shape the antifungal activity of bacterial communities. Ecology 95:1184–1190

    Article  PubMed  Google Scholar 

  • Kämpfer P, Glaeser SP, McInroy JA, Busse HJ (2016) Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 66(4):1869–1874

    Article  PubMed  CAS  Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Biol Sci 274:3119–3126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurm V, Van Der Putten WH, Pineda A, Hol WG (2018) Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences. Ann Bot 121(2):311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem 83: 184-199

  • Kyselková M, Moënne-Loccoz Y (2012) Pseudomonas and other microbes in disease-suppressive soils. In: Lichtfouse E (ed) Organic fertilisation, soil quality and human health—sustainable agriculture reviews. Springer, Dordrecht, pp 93–140

    Chapter  Google Scholar 

  • Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marečková M, Grundmann GL, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. PNAS 109(35):14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Shin SC, Lee J, Kim SJ, Kim BK, Hong SG et al (2012) Genome sequence of Sphingomonas sp. strain PAMC 26621, an Arctic-lichen-associated bacterium isolated from a Cetraria sp. J Bacterial 194(11):3030–3030

    Article  CAS  Google Scholar 

  • Li FQ, Hou BH, Chen L, Yao ZJ, Hong GF (2008) In vitro observation of the molecular interaction between NodD and its inducer naringenin as monitored by fluorescence resonance energy transfer. Acta Biochim Biophys Sin 40:783–789

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang G, Liu S, An Q, Zheng Q, Li B, Li Z (2014a) Comparative changes in the antioxidant system in the flag leaf of early and normally senescing near-isogenic lines of wheat (Triticum aestivum L.). Plant Cell Rep 33(7):1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Li XG, Ding CF, Hua K, Zhang TL, Zhang YN, Zhao L et al (2014b) Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Boil Biochem 78:149–159

    Article  CAS  Google Scholar 

  • Li XG, de Boer W, Zhang YN, Ding C, Zhang T, Wang X (2018) Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol Biochem 116:120–130

    Article  CAS  Google Scholar 

  • Li X, Garbeva P, Liu X, Klein Gunnewiek PJ, Clocchiatti A, Hundscheid MP et al (2019a) Volatile-mediated antagonism of soil bacterial communities against fungi. Environ Microbiol

  • Li XG, Jousset A, de Boer WJ, Carrión V, Zhang T, Wang X et al (2019b) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13:738–751

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Herbert SJ (2002) Fifteen years of research examining cultivation of continuous soybean in northeast China: A review. Field Crops Res 79 (1):1-7

    Article  Google Scholar 

  • Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8(8):1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Monteiro RA, Balsanelli E, Tuleski T, Faoro H, Cruz LM, Wassem R et al (2012) Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing. FEMS Microbiol Ecol 80(2):441–451

    Article  CAS  PubMed  Google Scholar 

  • Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5(1):1–20

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB et al (2013) Package ‘vegan’. Community ecology package, version 2(9):1–295

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980–989

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Lee S, Kao-Kniffin J (2017) Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb Ecol 73(2):394–403

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188(15):5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Boil 90(6):635–644

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Reponen T, Hyvärinen A, Ruuskanen J, Raunemaa T, Nevalainen A (1994) Comparison of concentrations and size distributions of fungal spores in buildings with and without mould problems. J Aerosol Sci 25(8):1595–1603

    Article  CAS  Google Scholar 

  • Rumberger A, Merwin IA, Thies JE (2007) Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biol Biochem 39:1645–1654

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbial Lett 278(1):1–9

    Article  CAS  Google Scholar 

  • Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K et al (2011) Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92(2):296–303

    Article  PubMed  Google Scholar 

  • Sekmen AH, Ozgur R, Uzilday B, Turkan I (2014) Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot 99:141–149

    Article  CAS  Google Scholar 

  • Smalla K, Sessitsch A, Hartmann A (2006) The Rhizosphere: soil compartment influenced by the root. FEMS Microbiol Ecol 56:165

    Article  CAS  PubMed  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC et al (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. PNAS 115(22):E5213–E5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su CL, Zhang FM, Sun K, Zhang W, Dai CC (2019) Fungal Endophyte Phomopsis liquidambari improves iron and molybdenum nutrition uptake of peanut in consecutive monoculture soil. J Soil Sci Plant Nutr 19(1):71–80

    Article  CAS  Google Scholar 

  • Sugiyama A, Bakker MG, Badri DV, Manter DK, Vivanco JM (2013) Relationships between Arabidopsis genotype-specific biomass accumulation and associated soil microbial communities. Botany 91:123–126

    Article  CAS  Google Scholar 

  • Tarkka M, Schrey S, Hampp R (2008) Plant associated microorganisms. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, New York

    Google Scholar 

  • Tisdall JM, Smith SE, Rengasamy P (1997) Aggregation of soil by fungal hyphae. Aust J Soil Res 35(1):55–60

    Article  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Xie XG, Zhang FM, Yang T, Chen Y, Li XG, Dai CC (2019) Endophytic fungus drives nodulation and N2 fixation attributable to specific root exudates. mBio 10(4):e00728-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. PNAS. 96(4):1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Firestone MK (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Wietse de Boer at NIOO and Dr. Jenny Kao-Kniffin at the Cornell University for help during preparation of the manuscript and Dr. Ronggui Tang (ISS-CAS) for suggestion in data analysis and chart design. This research was supported by the National Natural Science Foundation of China (41671306), the Excellent Youth Foundation of Jiangsu Province (BK20190040).

Author information

Authors and Affiliations

Authors

Contributions

X.G. conceived the project and designed this study; X.D. conducted the experiments; X.G, and X.D. analyzed the data with assistance from X.X. and C.F.; X.G., K.P., and D.C. contributed to drafting the initial manuscript, and all co-authors revised, read, and approved the final manuscript.

Corresponding authors

Correspondence to Xiaogang Li or Xingxiang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Panke-Buisse, K., Yao, X. et al. Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome. Plant Soil 446, 655–669 (2020). https://doi.org/10.1007/s11104-019-04379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04379-1

Keywords

Navigation