Skip to main content
Log in

Performance tradeoffs of optical WDM switches using different shared limited-range wavelength conversion mechanisms

  • Original Article
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The effects of different wavelength conversion ranging configurations on the performance of Wavelength Division Multiplexing (WDM) optical switches are investigated. Any-to-Any, Any-to-Range, Range-to-Any, and Range-to-Range conversion ranging configurations are considered. These mechanisms provide important design alternatives for optical switches due to technological limitations in the implementation of full range wavelength conversion in an all-optical wavelength converter device. Limited-range wavelength converter (LRWC) is a more economical and practical solution for WDM based optical networks. Differences among the input and output side ranging mechanisms and their effects on conversion resource sharing, and consequently on performance, are investigated. Any- to-Range ranging configuration is the most efficient mechanism and it operates comparably to Any-to-Any, reducing the need for complex control algorithms. The results help determine the most efficient ranging configuration for all-optical crossconnect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elmirghani J.M.H., Mouftah H.T. (2000). All-optical wavelength conversion: technologies and applications in DWDM networks. IEEE Commun. Mag. 38(3):86–92

    Article  Google Scholar 

  2. Tripathi T., Sivarajan K.N. (2000). Computing approximate blocking probabilities in wavelength routed all-optical networks with limited range wavelength conversion. IEEE J. Select. Areas Commun. 18(10):2123–2129

    Article  Google Scholar 

  3. Ramaswami R., Sasaki G. (1998). Multi-wavelength optical networks with limited wavelength conversion. IEEE/ACM Trans. Networking. 6(6):744–754

    Article  Google Scholar 

  4. Xiao G., Leung Y.W. (1999). Algorithms for allocating wavelength converters in all-optical networks. IEEE/ACM Trans. Networking. 7(4):545–557

    Article  Google Scholar 

  5. Al-Zahrani, F., Habiballa, A., Jayasumana, A.: Path blocking performance in multi-fiber wavelength routing networks with and without wavelength conversion. Proc. IEEE ICCCN ’03, pp. 580–583. Dallas, TX (October 2003)

  6. Al-Zahrani, F., Habiballa, A., Jayasumana, A.: Performance Merits of Multi-Fiber DWDM Networks Employing Different Shared Wavelength Conversion Resources Architectures. Proc. IEEE region 5 conference ’04, pp. 59–67. Norman, OK (April 2004)

  7. Habiballa, A., Al-Zahrani, F., Jayasumana, A.: Wavelength Conversion Resources Allocation Algorithms for Share- per-Link Wavelength Convertible Switch. Proc. IEEE region 5 conference ’04, pp. 131–139. Norman, OK (April 2004)

  8. Yates J.M., Rumsewicz M.P. (1999). Wavelength Converters in Dynamically Reconfigurable WDM Networks. IEEE Commun. Surveys Q2:2–15

    Article  Google Scholar 

  9. Campi D., Coriasso C. (2000). Wavelength Conversion Technologies. Photonic Network Commun. 2(1):85–95

    Article  Google Scholar 

  10. Spiekman L., Koren U., Chien M., Miller B., Perino J. (1997). All-Optical Mach-Zehnder, Wavelength Converter with Monolithically Integrated DFB Probe Source. IEEE Photonics Technol. Lett. 9(10):1349–1351

    Article  Google Scholar 

  11. Xu, L., Oxenlowe, L.K., Chi, N., Mork, J., Jeppesen, P., Hoppe, K., Hanberg, J.: Experimental characterisation of wavelength conversion at 40Gb/s based on electroabsorption modulators. Proc. IEEE Lasers and Electro-optics Society LEOS ’02 Annual Meeting 1, 111–112 (2002)

    Google Scholar 

  12. Lin, T., Sasaki, G.: Nonblocking WDM Networks with Fixed-Tuned Transmitters and Tunable Receivers. Proceedings of 37th Annual Allerton Conference on Communication, Control, and Computing 400–401 (1999)

  13. Wolfson, D., Hansen, P.B., Fjelde, T., Kloch, A., Janz, C., Coquelin, A., Guillemot, I., Gaborit, F., Poingt, F., and Renaud, M.: 40Gbit/s All-Optical Wavelength Conversion in an SOA-Based Allactive Mach-Zehnder Interferometer, ECOC ’99 170–171 (1999)

  14. Inoue K., Hasegawa T., Oda K., Toba H. (1993). Multichannel Frequency Conversion Experiment Using Fiber Four-Wave Mixing. Electron. Lett. 29(19):1708–1710

    Google Scholar 

  15. Caccioli D., Paoletti A. et al. (2004). Field Demonstration of in-Line All-Optical Wavelength Conversion in a WDM Dispersion Managed 40-Gbit/s Link. IEEE J. Selected Topics Quantum Electronics 10(2):356–362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anura P. Jayasumana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habiballa, A.A., Al-Zahrani, F.A., Fayoumi, A.G. et al. Performance tradeoffs of optical WDM switches using different shared limited-range wavelength conversion mechanisms. Photon Netw Commun 12, 285–294 (2006). https://doi.org/10.1007/s11107-006-0023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-006-0023-4

Keywords

Navigation