Skip to main content
Log in

Cover and iterative learning control for and decryption in secure communication

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Typical cover techniques adopted in the conventional secure communication schemes are the additive masking and modulation by multiplication. In order to enhance security, in this paper, the new masking and decryption methods were given by iterative learning control algorithm for secure communication. In order to enhance security, the paper proposed the nonlinear masking method to apply to the traditional items and used the iterative learning control algorithm to decrypt. The algorithm reconstructed the information signal completely and analyzed the robustness and convergence of learning algorithm about the initial error and output error. The convergence conditions were given and the simulations shown in the algorithm can reconstruct the signal in secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Richardson, R.: CSI computer crime and security survey at 19.i.cmpnet.com (2008)

  2. Li, Y., Dhotre, N.S., Ohara, Y., Kroeger, T.M., Miller, E.L., Long, D.D.E.: Horus: fine-grained encryption-based security for large-scale storage (PDF). www.ssrc.ucsc.edu. Discussion of encryption weaknesses for petabyte scale datasets

  3. Corron, N.J., Hahs, D.W.: A new approach to communications using chaotic signals. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(5), 373–382 (1997)

    Article  MATH  Google Scholar 

  4. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communication. Phys. Prev. Lett. 74(25), 5028–5031 (1995)

    Article  Google Scholar 

  5. Yang, T., Wu, C.W., Chua, L.O.: Cryptography based on chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(5), 469–472 (1997)

    Article  MATH  Google Scholar 

  6. Nijmeijer, H., Mareels, I.M.Y.: An observer looks at synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 882–890 (1997)

    Article  MathSciNet  Google Scholar 

  7. Huijberts, H., Nijmeijer, H., Willems, R.: System identification in communication with chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(6), 800–808 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. J. Robot. Syst. 1(2), 123–140 (1984)

    Article  Google Scholar 

  9. Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. IEEE Control Syst. Mag. 26(3), 96–114 (2006)

    Article  Google Scholar 

  10. Sun, M.X., Wang, D.W.: Closed-loop iterative learning control for non-linear systems with initial shifts. Int. J. Adapt. Control Signal Process. 16(7), 515–538 (2002)

    Article  MATH  Google Scholar 

  11. Huang, D.P., Xu, J.X., Venkataramanan, V., Huynh, T.C.T.: High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Trans. Ind. Electron. 61(2), 1085–1098 (2014)

    Article  Google Scholar 

  12. Sun, M.X.: Chaotic communication systems: an iterative learning perspective. In: Proceedings of the International Conference on Electrical and Control Engineering, pp. 573–577. IEEE, Wuhan (2010)

  13. Feldmann, U., Hasler, M., Schwaz, W.: Communication by chaotic signals: the inverse system approach. Int. J. Circuit Theory Appl. 24(5), 551–579 (1996)

    Article  MATH  Google Scholar 

  14. Zhou, H., Ling, X.T.: Problems with the chaotic inverse system encryption approach. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(3), 268–271 (1997)

    Article  Google Scholar 

  15. Zheng, Y., Chen, G.R., Zhu, C.Y.: A system inversion approach to chaos-based secure speech communication. Int. J. Bifurc. Chaos 15(8), 2569–2582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lü, J.H., Chen, G.R., Cheng, D.Z., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Prev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71(1), 65–68 (1993)

    Article  Google Scholar 

  19. Chen, G.R., Dong, X.N.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  20. Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Ann. Rev. Control 29(1), 33–56 (2005)

    Article  Google Scholar 

  21. Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(9), 817–819 (1996)

    Article  Google Scholar 

  22. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel R.A. (ed.) Advances in Cryptology—EUROCRYPT’ 92. EUROCRYPT 1992. Lecture Notes in Computer Science, vol 658. Springer, Berlin, Heidelberg (1992)

  23. Matsui, M.: The first experimental cryptanalysis of the data encryption standard. In: Desmedt Y.G. (eds.) Advances in Cryptology—CRYPTO’ 94. CRYPTO 1994. Lecture Notes in Computer Science, vol 839. Springer, Berlin, Heidelberg (1994)

  24. Matsui, M.: Linear cryptanalysis method for DES cipher (PDF). In: Advances in Cryptology—EUROCRYPT 1993. Archived from the original (PDF) on 2007-09-26. Retrieved 22 Feb. 2007

  25. Singh, S.: The Code Book, pp. 14–20. Anchor Books, New York (2000)

    Google Scholar 

  26. Al-Kadi, I.A.: The origins of cryptology: the Arab contributions. Cryptologia 16(2), 97–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schrödel, T.: Breaking short Vigenère Ciphers. Cryptologia 32(4), 334–337 (2008)

    Article  Google Scholar 

  28. Mingxuan, Sun: Iterative Learning Control. National Defense Press, Beijing (1999)

    MATH  Google Scholar 

  29. Chua, L.O., Kocarev, Lj, Eckert, K., Itoh, M.: Experimental chaos synchronization in Chua’s circuit. Int. J. Bifurc. Chaos 2, 705–708 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Hechi University Key Projection Foundation (XJ2016ZD004), the Hechi University for Youth teacher Foundation (XJ2017QN08), the Projection of Environment Master Foundation (2017HJA001, 2017HJB001), the key Project of the new century teaching reform Project in Guangxi (2010JGZ033) and the Promotion program for young teachers Foundation in University of Guang Xi (2018KY0495).

Author information

Authors and Affiliations

Authors

Contributions

Yinjun Zhang is the corresponding author of the paper. Menji Chen contributed the idea of the paper. Jianhuan Su did the simulation.

Corresponding author

Correspondence to Yinjun Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhang, Y. & Chen, M. Cover and iterative learning control for and decryption in secure communication. Photon Netw Commun 37, 243–252 (2019). https://doi.org/10.1007/s11107-019-00832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00832-4

Keywords

Navigation