Skip to main content
Log in

Decompositions of local Morrey-type spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We develop and apply a decomposition theory for generic local Morrey-type spaces. Our result is nonsmooth decomposition, which follows from the fact that local Morrey-type spaces are isomorphic to Hardy local Morrey-type spaces in the generic case. As an application of our results, we consider the Hardy operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbulut, A., Ekincioglu, I., Serbetci, A., Tararykova, T.V.: Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. Eurasian Math. J. 2(2), 5–30 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Akbulut, A., Guliyev, V.S.: Muradova, ShA: Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces. Complex Var. Elliptic Equ. 58(2), 259–280 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akbulut, A., Guliyev, V. S., Noi, T., Sawano, Y.: Generalized Morrey Spaces-Revisited. Zeitschrift für Analysis und ihre Anwendungen. (To Appear)

  5. Aykol, C., Guliyev, V.S., Serbetci, A.: Boundedness of the maximal operator in the local Morrey–Lorentz spaces. J. Inequal. Appl. 346, 11 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Aykol, C., Guliyev, V.S., Kucukaslan, A., Serbetci, A.: The boundedness of Hilbert transform in the local Morrey-Lorentz spaces. Integral Transforms Spec. Funct. 27(4), 318–330 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Batbold, T., Sawano, Y.: Decompositions for local Morrey spaces. Eurasian Math. J. 5(3), 9–45 (2014)

    MathSciNet  Google Scholar 

  8. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York (1976)

  9. Burenkov, V.I.: Sobolev spaces on domains. B.G. Teubner, Stuttgart-Leipzig (1998)

    Book  MATH  Google Scholar 

  10. Burenkov, V.I., Guliyev, H.V.: Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Studia Math. 163(2), 157–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burenkov, V.I., Guliyev, H.V., Guliyev, V.S.: Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces. J. Comput. Appl. Math. 208(1), 280–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burenkov, V.I., Guliyev, H.V, Guliyev, V.S.: On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces, The interaction of analysis and geometry, 17–32, Contemp. Math., 424, Am. Math. Soc., Providence, RI (2007)

  13. Burenkov, V.I., Guliyev, V.S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces. Potential Anal. 30(3), 211–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burenkov, V.I., Gogatishvili, A., Guliyev, V.S., Mustafayev, R.Ch.: Boundedness of the fractional maximal operator in local Morrey-type spaces. Complex Var. Elliptic Equ. 55(8–10), 739–758 (2010)

  15. Burenkov, V.I., Guliyev, V.S., Serbetci, A., Tararykova, T.V.: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces. Eurasian Math. J. 1(1), 32–53 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Burenkov, V.I., Gogatishvili, A., Guliyev, V.S., Mustafayev, R.Ch.: Boundedness of the fractional maximal operator in local Morrey-type spaces. Potential Anal. 35(1), 67–87 (2011)

  17. Burenkov, V.I., Jain, P., Tararykova, T.V.: On boundedness of the Hardy operator in Morrey-type spaces. Eurasian Math. J. 2(1), 52–80 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Burenkov, V.I., Nursultanov, E.D.: Description of interpolation spaces for local Morrey-type spaces. (Russian), Tr. Mat. Inst. Steklova 269 (2010), Teoriya Funktsii i Differentsialnye Uravneniya, 52–62; translation in Proc: Steklov Inst. Math. 269(1), 46–56 (2010)

  19. Burenkov, V.I., Senouci, A.: On integral inequalities involving differences. J. Comput. Appl. Math. 171, 141–149 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112, 241–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Di Fazio, G., Palagachev, D.K., Ragusa, M.A.: Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal. 166, 179–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. In: Monographs and Studies in mathematics. vol. 24, Boston, Pitman (1985)

  24. Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and on domains in \({\mathbb{R}}^{n}\)

  25. Guliyev, V.S.: Function spaces. Integral Operators and Two Weighted Inequalities on Homogeneous Groups, Some Applications (Russian), Baku (1999)

    Google Scholar 

  26. Guliyev, V.S., Mustafayev, R.Ch.: Integral operators of potential type in spaces of homogeneous type, (Russian). Doklady Ross. Akad. Nauk Matematika 354(6), 730–732 (1997)

  27. Guliyev, V.S., Mustafayev, R.Ch.: Fractional integrals in spaces of functions defined on spaces of homogeneous type, (Russian). Anal. Math. 24(3), 181–200 (1998)

  28. Hasanov, S.G.: Marcinkiewicz integral and its commutators on local Morrey type spaces. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 35(4), Issue Mathematics, 84–94 (2015)

  29. Iida, T., Sawano, Y., Tanaka, H.: Atomic decomposition for Morrey spaces. Z. Anal. Anwend 33(2), 149–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kalybay, A.: On boundedness of the conjugate multidimensional Hardy operator from a Lebesgue space to a local Morrey-type space. Int. J. Math. Anal. (Ruse) 8(9–12), 539–553 (2014)

    Article  MathSciNet  Google Scholar 

  31. Kuttner, B.: Some theorems on fractional derivatives. Proc. Lond. Math. Soc. 3(2), 480–497 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuznetsov, Yu.V: On pasting functions in the space \(W_{p,\theta }^r\). Trudy Math. Inst Steklov 140, 191–200 (1976)

  33. Lukkassen, D., Persson, L.E., Samko, N.: Hardy type operators in local vanishing morrey spaces on fractal sets. Fract. Calculus. Appl. Anal. 18(5), 12521276 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nikolskii, S.M.: On a property of the \(H^r_p\) classes. Ann. Univ. Sci. Budapest, Sect. Math. 3–4, 205–216 (1960/1961),

  36. Nikolskii, S.M.: Approximation of functions of several variables and embedding theorems, Nauka, Moscow, 1969. Springer-Verlag, English translation (1975)

    Google Scholar 

  37. Persson, L.E., Samko, N.: Weighted Hardy and potential operators in the generalized Morrey spaces. J. Math. Anal. Appl. 377(2), 792–806 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peetre, J.: On the theory of \(M_{p,\lambda }\). J. Funct. Anal. 4, 71–87 (1969)

    Article  Google Scholar 

  39. Samko, N.: Weighted Hardy operators in the local generalized vanishing Morrey spaces. Positivity 17(3), 683–706 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Samko, N.: On two-weight estimates for the maximal operator in local Morrey spaces. Int. J. Math. 25(11), 8, 1450099 (2014)

  41. Stein, E.M.: Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  42. Yakovlev, G.N.: Boundary properties of functions in the class \(W^l_p\) on domains with corner points. Doklady Ac. Sci. USSR 70(1), 73–76 (1961)

    MathSciNet  Google Scholar 

  43. Yakovlev, G.N.: On traces of functions in the space \(W_p^l\) on piecewise smooth surfaces. Matem. Sbornik 76 (116)(4), 526–543 (1967)

Download references

Acknowledgements

Yoshihiro Sawano was supported by Grant-in-Aid for Scientific Research (C), No. 24540194. The research of V. Guliyev was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan, Grant EIF-2013-9(15)-46/10/1 and by the grant of Presidium Azerbaijan National Academy of Science 2015. The authors are grateful to Dr. Denny Ivanal Hakim for his pointing out our mistake in Section 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Sawano.

Appendices

Appendix

We can relate local Morrey-type spaces with Herz spaces.

Lemma 8.1

Let \(1<p<\infty \), \(1 \le \theta \le \infty \) and \(0<\lambda <\frac{n}{p}\). Then

$$\begin{aligned} \Vert f\Vert _{LM^\lambda _{p\theta }}&\sim \left\{ \sum _{j=-\infty }^\infty \left( 2^{-\lambda j} \left( \int _{2^{j-1}<|y|<2^j}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }} \end{aligned}$$

for all measurable functions \(f:{\mathbb R}^n \rightarrow {\mathbb C}\).

The right-hand side above is called the Herz norm.

Proof

It is clear from (1.14) that

$$\begin{aligned} \Vert f\Vert _{LM^\lambda _{p\theta }} \gtrsim \left\{ \sum _{j=-\infty }^\infty \left( 2^{-\lambda j} \left( \int _{2^{j-1}<|y|<2^j}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }}. \end{aligned}$$

To prove the reverse estimate, we have

$$\begin{aligned} \Vert f\Vert _{LM^\lambda _{p\theta }}&\sim \left\{ \sum _{j=-\infty }^\infty \left( 2^{-\lambda j} \left( \int _{|y|<2^j}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }}\\&= \left\{ \sum _{j=-\infty }^\infty \left( \sum _{k=-\infty }^j 2^{-\lambda j} \left( \int _{2^{k-1}<|y|<2^k}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }}\\&= \left\{ \sum _{j=-\infty }^\infty \left( \sum _{k=-\infty }^\infty \chi _{(-\infty ,j]}(k) 2^{-\lambda j} \left( \int _{2^{k-1}<|y|<2^k}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }}\\&\le \sum _{k=-\infty }^\infty \left\{ \sum _{j=-\infty }^\infty \left( \chi _{(-\infty ,j]}(k) 2^{-\lambda j} \left( \int _{2^{k-1}<|y|<2^k}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }}\\&= \sum _{k=-\infty }^\infty \left\{ \left( \frac{1}{1-2^{-\lambda }} \cdot 2^{-\lambda k} \left( \int _{2^{k-1}<|y|<2^k}|f(y)|^p\,dy\right) ^{\frac{1}{p}} \right) ^\theta \right\} ^{\frac{1}{\theta }}, \end{aligned}$$

as was to be shown. \(\square \)

Comparison of various Morrey spaces and Nikolskii spaces

1.1 Global weighted Morrey type spaces

Theorems 1.3 and 1.4 are translated into the following results on global Morrey spaces.

Theorem 9.1

Let \(1<p<\infty \), \(1< \theta \le \infty \) and \(w\in \Omega _{\theta }\). Assume that \(w\) satisfies the doubling condition; \(C^{-1}w(r) \le w(2r) \le Cw(r)\) for all \(r>0\). We define \(\hat{v}_1,\hat{v}_2\) by (1.8). Assume that \(H^{*}\) is bounded on \(L_{\theta ,\hat{v}_1}(0,\infty )\) to \(L_{\theta ,\hat{v}_2}(0,\infty )\). Suppose that a real parameter s satisfies (1.9) for all \(r>0\). Assume that we are given \(\{Q_j\}_{j=1}^\infty \subset {\mathcal Q}({\mathbb R}^n)\), \(\{a_j\}_{j=1}^\infty \subset L^s({\mathbb R}^n)\), \(\{\lambda _j\}_{j=1}^\infty \subset [0,\infty )\) satisfying

$$\begin{aligned} \Vert a_j\Vert _{L^s} \le \Vert \chi _{Q_j}\Vert _{L^s}=|Q_j|^{1/s}, \quad \mathrm{supp}(a_j) \subset Q_j, \quad \left\| \sum _{j=1}^\infty \lambda _j\chi _{Q_j} \right\| _{GM_{p\theta ,w(\cdot )}} <\infty . \end{aligned}$$
(9.1)

Then the series \(f \equiv \sum _{j=1}^\infty \lambda _j a_j\) converges in \(L^1_\mathrm{loc}({\mathbb R}^n)\) and in the Schwartz space \({\mathcal S}'({\mathbb R}^n)\) of tempered distributions and satisfies the estimate

$$\begin{aligned} \Vert f\Vert _{GM_{p\theta ,w(\cdot )}} \le C\left\| \sum _{j=1}^\infty \lambda _j\chi _{Q_j} \right\| _{GM_{p\theta ,w(\cdot )}}, \end{aligned}$$
(9.2)

where \(C>0\) depends only on \(n,p,q,w\) and s.

Proof

Just use (1.7) and reexamine the proof of Theorem 1.4. We omit the further detail. \(\square \)

Theorem 9.2

Let \(L \in {\mathbb N}_0={\mathbb N} \cup \{0\}\), \(1<p<\infty \), \(1<\theta \le \infty \) and \(w \in \Omega _{\theta }\). Assume that \(w\) satisfies the doubling condition; \(C^{-1}w(r) \le w(2r) \le Cw(r)\) for all \(r>0\). We define \(\hat{v}_1,\hat{v}_2\) by (1.8). Assume that \(H^*\) is bounded from \(L_{\theta ,\hat{v}_1}(0,\infty )\) to \(L_{\theta ,\hat{v}_2}(0,\infty )\). Suppose that a real parameter s satisfies (1.9) for all \(r>0\). Let \(f \in LM_{p\theta ,w(\cdot )}({\mathbb R}^n)\). Then there exist \(\{\lambda _j\}_{j=1}^\infty \subset [0,\infty )\), \(\{Q_j\}_{j=1}^\infty \subset {\mathcal Q}({\mathbb R}^n)\) and \(\{a_j\}_{j=1}^\infty \subset L^\infty ({\mathbb R}^n)\) such that \(f\equiv \sum _{j=1}^\infty \lambda _j a_j\) converges in \({\mathcal S}'({\mathbb R}^n) \cap L^1_\mathrm{loc}({\mathbb R}^n)\), that \(a_j\) satisfies (1.12) for all multi-indices \(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\) with \(|\alpha | \equiv \alpha _1+\alpha _2+\cdots +\alpha _n \le L\) and, that for all \(v>0\)

$$\begin{aligned} \left\| \left( \sum _{j=1}^\infty (\lambda _j\chi _{Q_j})^{v} \right) ^{1/v}\right\| _{GM_{p\theta ,w(\cdot )}} \le C_v \Vert f\Vert _{GM_{p\theta ,w(\cdot )}}. \end{aligned}$$
(9.3)

Here the constant \(C_v>0\) is independent of f.

Proof

Use the method of Theorem 9.1 to obtain \(\{\lambda _j\}_{j=1}^\infty \subset [0,\infty )\), \(\{Q_j\}_{j=1}^\infty \subset {\mathcal Q}({\mathbb R}^n)\) and \(\{a_j\}_{j=1}^\infty \subset L^\infty ({\mathbb R}^n)\) such that \(f\equiv \sum _{j=1}^\infty \lambda _j a_j\) converges in \({\mathcal S}'({\mathbb R}^n) \cap L^1_\mathrm{loc}({\mathbb R}^n)\), that \(a_j\) satisfies (1.12) and (1.13) for all multi-indices \(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\) with \(|\alpha | \equiv \alpha _1+\alpha _2+\cdots +\alpha _n \le L\) and for all \(v>0\). We need to check (9.3). To this end, we have only to show

$$\begin{aligned} \left\| \left( \sum _{j=1}^\infty (\lambda _j\chi _{Q_j}(\cdot +x))^{v} \right) ^{1/v}\right\| _{LM_{p\theta ,w(\cdot )}} \le C_v \Vert f(\cdot +x)\Vert _{LM_{p\theta ,w(\cdot )}}. \end{aligned}$$

However, since

$$\begin{aligned} f=\sum _{j=1}^\infty \lambda _j a_j \end{aligned}$$

is the atomic decomposition of \(f \in LM_{p\theta ,w(\cdot )}\), we can say that

$$\begin{aligned} f(\cdot +x)=\sum _{j=1}^\infty \lambda _j a_j(\cdot +x) \end{aligned}$$

is the atomic decomposition of f. Thus, we obtain

$$\begin{aligned} \left\| \left( \sum _{j=1}^\infty (\lambda _j\chi _{Q_j}(\cdot +x))^{v} \right) ^{1/v}\right\| _{LM_{p\theta ,w(\cdot )}}&\le C_v \Vert {\mathcal M}[f(\cdot +x)]\Vert _{LM_{p\theta ,w(\cdot )}}\\&=C_v \Vert {\mathcal M}f(\cdot +x)\Vert _{LM_{p\theta ,w(\cdot )}}\\&\le C_v \Vert f(\cdot +x)\Vert _{LM_{p\theta ,w(\cdot )}}, \end{aligned}$$

as was to be shown. \(\square \)

1.2 Classical Morrey spaces

The classical Morrey spaces \(M^{\lambda }_{p}({\mathbb R}^n)\) were first introduced by Morrey in [34] to study the local behavior of solutions to second order elliptic partial differential equations. For the boundedness of the Hardy–Littlewood maximal operator, the fractional integral operator and the Calderón-Zygmund singular integral operator on these spaces, we refer the readers to [1, 20, 38]. For the properties and applications of classical Morrey spaces, see [21, 23] and references therein.

Morrey spaces \(M^{\lambda }_{p}({\mathbb R}^n)\), named after Morrey, were based on his study of elliptic differential operators in 1938 [34] and they are defined as follows: For \(\lambda \in \mathbb {R}, 0<p\le \infty , f\in M^{\lambda }_{p}({\mathbb R}^n)\) if \(f\in L^p_\mathrm{loc}({\mathbb R}^n)\) and

$$\begin{aligned} \Vert f\Vert _{M_p^\lambda }\equiv \Vert f\Vert _{M_p^\lambda ({\mathbb R}^n)}=\sup _{x\in \mathbb {R}^n, r>0} r^{-\lambda }\Vert f\Vert _{L^p(B(x,r))}<\infty , \end{aligned}$$

where B(xr) is the open ball in \(\mathbb {R}^n\) centered at the point \(x\in \mathbb {R}^n\) of radius \(r>0\).

In other words \(f\in M^{\lambda }_{p}({\mathbb R}^n)\) if \(f\in L^p_\mathrm{loc}(\mathbb {R}^n)\) and there exists \(c>0\) (depending on f) such that for all \(x\in \mathbb {R}^n\) and for all \(r>0\)

$$\begin{aligned} \Vert f\Vert _{L^p(B(x,r))}\le cr^\lambda . \end{aligned}$$

The minimal value of c in this inequality is \(\Vert f\Vert _{M_p^\lambda }\).

If \(\lambda =0\), then

$$\begin{aligned} M_p^0({\mathbb R}^n)=L^p({\mathbb R}^n). \end{aligned}$$

If \(\lambda =\frac{n}{p}\), then

$$\begin{aligned} M_p^{\frac{n}{p}}({\mathbb R}^n)=L^\infty ({\mathbb R}^n). \end{aligned}$$

If \(\lambda >\frac{n}{p}\) or \(\lambda <0\), then

$$\begin{aligned} M_p^\lambda ({\mathbb R}^n)=\Theta , \end{aligned}$$

where \(\Theta \equiv \Theta (\mathbb {R}^n)\) is the set of all functions equivalent to 0 on \(\mathbb {R}^n\).

So the admissible range of the parameters is

$$\begin{aligned} 0<p\le \infty \quad and\quad 0\le \lambda \le \frac{n}{p}. \end{aligned}$$
(9.4)

The cases \(p=\infty \) forces \(\lambda \) to be 0 and \(M_\infty ^0({\mathbb R}^n)=L^\infty ({\mathbb R}^n)\). Under these assumptions, which will always be assumed in the sequel, the space \(M^{\lambda }_{p}({\mathbb R}^n)\) is a Banach space for \(1\le p\le \infty \) and a quasi-Banach space for \(0<p<1\).

Also the space \(M_p^\lambda ({\mathbb R}^n)\) does not coincide with a Lebesgue space, if and only if

$$\begin{aligned} 0<p<\infty \quad and\quad 0<\lambda <\frac{n}{p}. \end{aligned}$$
(9.5)

Furthermore,

$$\begin{aligned} L^{\infty }({\mathbb R}^n)\cap L^p({\mathbb R}^n)\subset M_p^\lambda ({\mathbb R}^n). \end{aligned}$$

If \(f\in L^p\), then \(f\in M_p^\lambda ({\mathbb R}^n)\) if and only if \(\sup _{x\in \mathbb {R}^n, 0<r\le 1}r^{-\lambda }\Vert f\Vert _{L^p(B(x,r))}<\infty \), hence under this assumption only local properties of f are of importance.

Consider the Nikolskii space \(H_p^\lambda \equiv H_p^\lambda (\mathbb {R}^n)\) of functions possessing common smoothness of order \(\lambda \) measured in the \(L^p\) metrics. For \(\lambda >0, 1\le p\le \infty \) they are defined in the following way: fix an integer \(\sigma >\lambda \). We say that \(f\in H_p^\lambda ({\mathbb R}^n)\) if \(f\in L^p({\mathbb R}^n)\) and

$$\begin{aligned} \Vert f\Vert _{H_p^\lambda }=\Vert f\Vert _{L^p}+\sup _{h\in \mathbb {R}^n, h\ne 0}\left| h\right| ^{-\lambda }\left\| \Delta _h^\sigma f\right\| _{L^p}<\infty , \end{aligned}$$

where \(\Delta _h^\sigma f\) is the difference of f of order \(\sigma \in \mathbb {N}\) with step h. For different \(\sigma >\lambda \) the definitions are equivalent.) One can prove that if \(0<\lambda <\frac{n}{p}\), then

$$\begin{aligned} H_p^\lambda ({\mathbb R}^n)\subset M_p^\lambda ({\mathbb R}^n). \end{aligned}$$

We refer to [31] for \(n = 1\) and [35, 36] \(n>1\). Clearly the converse inclusion does not hold, because if \(f\in M_p^\lambda ({\mathbb R}^n)\), then clearly \(fg\in M_p^\lambda ({\mathbb R}^n)\) for any bounded measurable function g, which is not true for the case of the spaces \(H_p^\lambda ({\mathbb R}^n)\). So, \(M_p^\lambda ({\mathbb R}^n)\) is not a space of functions possessing any kind of common smoothness of order \(\lambda \), but the expressions \(\Vert f\Vert _{L^p(B(x,r))}\) behave like the ones for functions f possessing certain smoothness of order \(\lambda \). Detailed exposition of properties of these spaces can be found in [9, 36]. Note that the expression for \(\Vert f\Vert _{LM_{p\theta }^\lambda }\) is very similar to the semi-norms \(\Vert f\Vert _{b_{p\theta }^\lambda }\) of the Nikol’skii-Besov spaces \(B_{{p\theta }}^\lambda \). In the latter case, we suppose \(\lambda >0, 1\le p,\theta \le \infty \) and \(\Vert f\Vert _{L^p(B(r))}\) should be replaced by the \(L^p\) modulus of continuity: \(w^\sigma (f,r)=\sup _{\left| h\right| \le r}\left\| \Delta _h^\sigma f\right\| _{L^p(\mathbb {R}^n)}\) with \(\sigma >\lambda \). Recall that \(\Vert f\Vert _{B_{p\theta }^\lambda }=\Vert f\Vert _{L^p}+\Vert f\Vert _{b_{p\theta }^\lambda }\). If \(\theta =\infty \) then \(B_{p\infty }^\lambda ({\mathbb R}^n)\equiv H_p^\lambda ({\mathbb R}^n)\). There are several definitions, equivalent for these values of the parameters, of the spaces \(B_{p\theta }^\lambda ({\mathbb R}^n)\). The definition mentioned above makes sense for a wider range of the parameters, namely for \(\lambda >0, 0<p,\theta \le \infty \). For this range of the parameters the equivalence of the quasi-norms \(\left\| \cdot \right\| _{B_{p\theta }^\lambda }\) for different \(\sigma >\lambda \) was proved in [20]. If \(\theta =p\) then

$$\begin{aligned} \Vert f\Vert _{LM_{pp}^\lambda }=\left( \lambda p\right) ^{-\frac{1}{p}}\left( \int _{\mathbb {R}^n}\frac{\left| f(x)\right| ^p}{\left| x\right| ^{\lambda p}}dx\right) ^{\frac{1}{p}}. \end{aligned}$$
(9.6)

For \(n=1, 1\le p,\theta<\infty , 0<\lambda <\frac{1}{p}\) the inclusion

$$\begin{aligned} B_{p\theta }^\lambda ({\mathbb R}^n)\subset GM_{p\theta }^\lambda ({\mathbb R}^n) \end{aligned}$$
(9.7)

was proved by Kuznetsov [32]. In the diagonal case \(p=\theta \) (9.7) follows by equality (9.6) and the estimate of the right-hand side of (4.2) via \(\Vert f\Vert _{b_{pp}^\lambda }\) for functions \(f\in B_{pp}^\lambda \), proved by Yakovlev [42, 43].

Let us recall some results on local Morrey-type spaces. In 1994 Guliyev initially introdused and studied the local Morrey-type spaces in his doctoral thesis [24]; see also [25]. The main purpose of [24, 25] is to give some sufficient conditions for the boundedness of fractional integral operators and singular integral operators defined on homogeneous Lie groups in the local Morrey-type spaces.

In a series of papers [2, 3, 10,11,12,13,14,15,16] by Burenkov, Husein Guliyev and Vagif Guliyev etc. some necessary and sufficient conditions for the boundedness of fractional maximal operators, fractional integral operators and singular integral operators in local Morrey-type spaces \(LM_{p\theta ,w(\cdot )}({\mathbb R}^n)\) were given. The fractional maximal operator, the Hardy–Littlewood maximal operator, the fractional integral operator and the Marcinkiewicz operator are considered in [10, 13, 14, 16, 28], respectively. We refer to [40] for the two-weight estimates for the Hardy–Littlewood maximal operators.

1.3 Local Morrey-type spaces and interpolation

Investigating local Morrey-type spaces is not a mere quest to generality; it appears naturally in the context of real interpolation. In [18], Burenkov and Nursultanov established that

$$\begin{aligned} ( L^p(\Omega ,w^{\lambda _0},\mu ), L^p(\Omega ,w^{\lambda _1},\mu ) )_{\theta ,q} \end{aligned}$$

is a generalized local Morrey-type space, when we are given weights. More precisely, we can state the result as follows: We start with generalizing the space \(LM_{p\theta ,w(\cdot )}({\mathbb R}^n)\). Let \(0<p,q \le \infty \), \(0<\lambda <\infty \) if \(q<\infty \), \(0 \le \lambda <\infty \) if \(q=\infty \). Let \(\Omega \subset {\mathbb R}^n\) be a measurable set and \(\mu \) be a \(\sigma \)-finite Borel measure on \(\Omega \). Moreover, let \(G=(G_t)_{t>0}\) where all the \(G_t\)’s are \(\mu \)-measurable subsets for which \(G_t \ne \Omega \) for some \(t>0\), \(G_{t_1} \subset G_{t_2}\) if \(t_1<t_2\), and \(\bigcup _{t>0}G_t=\Omega \). We define

$$\begin{aligned} \Vert f\Vert _{LM^\lambda _{p,q}(G,\mu )} \equiv \left( \int _0^\infty (t^{-\lambda }\Vert f\Vert _{L^p(G_t,\mu )})^q\frac{dt}{t} \right) ^{\frac{1}{q}}. \end{aligned}$$

To formulate the interpolation result, we consider a special case of G. Let \(w_0,w_1\) be positive \(\mu \)-measurable functions on \(\Omega \subset {\mathbb R}^n\) and \(0<\lambda _0,\lambda _1<\infty \). Let the family \(G_{\lambda _0,\lambda _1}=(G_{t,\lambda _0,\lambda _1})_{t>0}\) be defined by:

$$\begin{aligned}&\displaystyle G_{t,\lambda _0,\lambda _1} = \{x \in \Omega \,:\, w_0(x)^{\alpha _0}w_1(x)^{\alpha _1}<t\} \quad (t>0).\\&\displaystyle d\nu _{\lambda _0,\lambda _1}(x) = (w_0(x)^{\beta _0}w_1(x)^{\beta _1})^p\,d\mu (x), \end{aligned}$$

where

$$\begin{aligned} \alpha _0=\frac{1}{\lambda _1-\lambda _0}, \quad \alpha _1=\frac{1}{\lambda _0-\lambda _1}, \quad \beta _0=\frac{\lambda _1}{\lambda _1-\lambda _0}, \quad \beta _1=\frac{\lambda _0}{\lambda _0-\lambda _1}. \end{aligned}$$

Observe that

$$\begin{aligned} LM^{\lambda _0}_{p,p}(G_{\lambda _0,\lambda _1},\nu _{\lambda _0,\lambda _1}) = L^p(\Omega ,w_0,\mu ), \quad LM^{\lambda _1}_{p,p}(G_{\lambda _0,\lambda _1},\nu _{\lambda _0,\lambda _1}) = L^p(\Omega ,w_1,\mu ). \end{aligned}$$

In words of the book [8], Burenkov and Nursultanov obtained the following interpolation result (9.8) in [18], which compliments the Stein-Weiss type interpolation (9.9):

Theorem 9.3

Suppose that the parameters \(p,q,\lambda _0,\lambda _1,\theta \in (0,\infty ]\) satisfy

$$\begin{aligned} \lambda _0,\lambda _1<\infty , \quad \lambda _0 \ne \lambda _1, \quad \theta <1, \end{aligned}$$

and \(\lambda =(1-\theta )\lambda _0+\theta \lambda _1\). Then

$$\begin{aligned} (L^p(\Omega ,w_0,\mu ),L^p(\Omega ,w_1,\mu ))_{\theta ,q} = LM^{\lambda }_{p,q}(G_{\lambda _0,\lambda _1},\nu _{\lambda _0,\lambda _1}). \end{aligned}$$
(9.8)

If \(q=p\),

$$\begin{aligned} (L^p(\Omega ,w_0,\mu ),L^p(\Omega ,w_1,\mu ))_{\theta ,p} = L^p(\Omega ,w_0{}^{1-\theta }w_1{}^{\theta },\mu ). \end{aligned}$$
(9.9)

Our method seems to be applicable to the anisotropic local Morrey-type spaces defined in [2]. Based on the definition above, Akbulut, Guliyev and Muradova discussed the boundedness property of the anisotropic Riesz potential in the anisotropic local Morrey-type spaces in [3]. We feel that the method employed in [29] seems to be applicable once we obtain a counterpart of Theorems 1.1 and 1.2. In [5], Aykol, Guliyev and Serbetci defined the local Lorentz Morrey spaces as the set of all measurable functions f for which the quasi-norm

$$\begin{aligned} \Vert f\Vert _{M^\mathrm{loc}_{p,q;1}} \equiv \sup _{t>0}t^{-\lambda /q}\Vert s^{1/p-1/q}f^*(s)\Vert _{L_q(0,t)}<\infty . \end{aligned}$$

In [5, Theorem 4.1], Aykol, Guliyev and Serbetci obtained the boundedness of the Hardy–Littlewood maximal operator in the local Lorentz Morrey spaces. In [6, Theorem 3.1], Aykol, Guliyev, Kucukaslan and Serbetci obtained the boundedness of the Hilbert transform in the local Lorentz Morrey spaces. The modification of the argument to the anisotropic setting or to the local Lorentz Morrey spaces will be left as a future work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliyev, V.S., Hasanov, S.G. & Sawano, Y. Decompositions of local Morrey-type spaces. Positivity 21, 1223–1252 (2017). https://doi.org/10.1007/s11117-016-0463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-016-0463-8

Keywords

Mathematics Subject Classification

Navigation