Skip to main content
Log in

The effects of simultaneous RNAi suppression of PsbO and PsbP protein expression in photosystem II of Arabidopsis

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Interfering RNA was used to suppress simultaneously the expression of the four genes which encode the PsbO and PsbP proteins of Photosystem II in Arabidopsis (PsbO: At5g66570, At3g50820 and PsbP: At1g06680, At2g30790). A phenotypic series of transgenic plants was obtained that expressed variable amounts of the PsbO proteins and undetectable amounts of the PsbP proteins. Immunological studies indicated that the loss of PsbP expression was correlated with the loss of expression of the PsbQ, D2, and CP47 proteins, while the loss of PsbO expression was correlated with the loss of expression of the D1 and CP43 proteins. Q A reoxidation kinetics in the absence of DCMU indicated that the slowing of electron transfer from Q A to QB was correlated with the loss of the PsbP protein. Q A reoxidation kinetics in the presence of DCMU indicated that charge recombination between Q A and donor side components of the photosystem was retarded in all of the mutants. Decreasing amounts of the PsbO protein in the absence of the PsbP component also led to a progressive loss of variable fluorescence yield (FV/FM). During fluorescence induction, the loss of PsbP was correlated with a more rapid O to J transition and a loss of the J to I transition. These results indicate that the losses of the PsbO and PsbP proteins differentially affect separate protein components and different PS II functions and can do so, apparently, in the same plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

EDTA:

Ethylenediaminetetraacetic acid

MS Medium:

Murashige and Skoog medium

PCR:

Polymerase chain reaction

PS II:

Photosystem II

LDS-PAGE:

Lithium dodecyl sulfate polyacrylamide gel electrophoresis

op mutants:

Mutants containing RNAi suppressing both the PsbO and PsbP proteins to various levels, simultaneously

Tricine:

N-tris[hydroxymethyl]methyl glycine

References

  • Allahverdiyeva Y, Deak Z, Szilard A, Diner BA, Nixon PJ, Vass I (2004) The function of D1-H322 in photosystem II electron transport studied by thermoluminescence and chlorophyll fluorescence in site-directed mutants of Synechocystis 6803. Eur J Biochem 271:3523–3532

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33 kDa manganese-stabilizing protein. Biochemistry 31:4623–4628

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Burnap RL (2005) The extrinsic proteins of photosystem II. In: Wydrzynski T, Satoh K (eds) Photosystem II: the water/plastoquinone oxido-reductase of photosynthesis. Springer, Dordrecht, pp 95–120

    Google Scholar 

  • Bricker TM, Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of photosystem II. A critical review. Photosyn Res 56:157–173

    Article  CAS  Google Scholar 

  • Bricker TM, Ghanotakis DF (1996) Introduction to oxygen evolution and the oxygen-evolving complex. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4. Kluwer Academic Publishers, Dordrecht, pp 113–136

    Chapter  Google Scholar 

  • Burnap RL, Sherman LA (1991) Deletion mutagenesis in Synechocystis sp. PCC 6803 indicates that the Mn-stabilizing protein of photosystem II is not essential for oxygen evolution. Biochemistry 30:440–446

    Article  PubMed  CAS  Google Scholar 

  • Chu H-A, Nguyen AP, Debus RJ (1994) Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability of inefficient assembly of the manganese cluster in vivo. Biochemistry 33:6137–6149

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Ghanotakis DF, Plijter JJ, Van Gorkom HJ, Babcock GT (1984) Kinetics of the oxygen-evolving complex in salt-washed photosystem II preparations. Biochim Biophys Acta 767:515–523

    Article  CAS  Google Scholar 

  • Ettinger WF, Theg SM (1991) Physiologically active chloroplasts contain pools of unassembled extrinsic proteins of the photosynthetic oxygen-evolving enzyme complex in the thylakoid lumen. J Cell Biol 115:321–328

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder WP, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    Article  PubMed  CAS  Google Scholar 

  • Hailton AJ, Baulcombe DC (1999) A species of small anti-sense RNA in post transcriptional gene silencing in plants. Science 286:950–952

    Article  Google Scholar 

  • Hashimoto A, Yamamoto Y, Theg SM (1996) Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly competent. FEBS Lett 391:29–34

    Article  PubMed  CAS  Google Scholar 

  • Ifuku K, Yamamoto J, Ono T-A, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Koike H, Inoue Y (1989) N-terminal sequencing of photosystem II low-molecular-mass proteins 5 and 3.1 kDa components of the O2-evolving core complex from higher plants. FEBS Lett 242:263–269

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Briantais JM (1996) Photosystem II heterogeneity. In: Ort D, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4. Kluwer Academic Publishers, Dordrecht, pp 265–287

    Chapter  Google Scholar 

  • Liu H, Frankel LK, Bricker TM (2007) Functional analysis of photosystem II in a PsbO-1 deficient mutant in Arabidopsis thaliana. Biochemistry 46:7607–7613

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern N, Saenger W, Zouni A, Biesiadka J (2006) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    Article  PubMed  CAS  Google Scholar 

  • Murakami R, Ifuku K, Takabayashi A, Shikanai T, Endo T, Sato F (2002) Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II. FEBS Lett 523:138–142

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Miyao M, Omata T, Matsunami H, Kuwabara T (1984) Stoichiometry of components in the photosynthetic oxygen evolution system of photosystem II particles prepared with Triton X-100 from spinach chloroplast. Biochim Biophys Acta 765:363–369

    Article  CAS  Google Scholar 

  • Nedbal L, Trtílek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of photosystem II. J Photochem Photobiol B 48:154–157

    Article  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Ann Rev Plant Biol 57:521–565

    Article  CAS  Google Scholar 

  • Peltier J-B, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, Van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  Google Scholar 

  • Rashid A, Carpentier R (1990) The 16 and 23 kDa extrinsic polypeptides and the associated Ca2+ and Cl- modify atrazine interaction with the photosystem II core complex. Photosyn Res 24:221–227

    Article  CAS  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dormann P, Benning C, Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36:11769–11776

    Article  PubMed  CAS  Google Scholar 

  • Robinson HH, Crofts AR (1983) Kinetics of the oxidation reduction reactions of the photosystem II quinone acceptor complex and the pathway for deactivation. FEBS Lett 153:221–226

    Article  CAS  Google Scholar 

  • Roelofs TA, Lee CH, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II α and β units. Biophys J 61:1147–1163

    CAS  PubMed  Google Scholar 

  • Schreiber G, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch [C] 42:1255–1264

    CAS  Google Scholar 

  • Schubert M, Petersson U-A, Hass BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Strasser RJ, Govindjee (1991) The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  • Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transient in leaves and K1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis, vol 2. Kluwer Academic Publishers, Dordrecht, pp 29–32

    Google Scholar 

  • Thilen AMPG, Van Gorkom HJ (1981) Energy transfer and quantum yield in photosystem II. Biochim Biophys Acta 637:439–446

    Article  Google Scholar 

  • Thornton LE, Roose JL, Pakrasi HB, Ikeuchi M (2005) The low molecular weight proteins of photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 121–138

    Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    Article  PubMed  CAS  Google Scholar 

  • Weiss W, Renger G (1984) Analysis of the system II reaction by UV-absorption changes in Tris-washed chloroplasts. In: Sybesma C (ed) Advances in photosynthesis research, vol 1. Martinus Nijhoff/Dr. W. Junk, Den Haag, pp 167–170

    Google Scholar 

  • Wollenberger L, Stefansson H, Yu SG, Albertsson P (1994) Isolation and characterization of vesicles originating from the chloroplast grana margins. Biochim Biophys Acta 1184:93–102

    Article  CAS  Google Scholar 

  • Yi X, McChargue M, Laborde SM, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170–16174

    Article  PubMed  CAS  Google Scholar 

  • Yi X, Hargett SH, Frankel LK, Bricker TM (2006) The PsbQ protein is required in Arabidopsis for photosystem II assembly/stability and photoautotrophy under low light conditions. J Biol Chem 281:26260–26267

    Article  PubMed  CAS  Google Scholar 

  • Yi X, Liu H, Hargett S, Frankel LK, Bricker TM (2007) The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J Biol Chem 34:24833–24841

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation and the Department of Energy to T.M.B. and L.K·F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Bricker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, X., Hargett, S.R., Frankel, L.K. et al. The effects of simultaneous RNAi suppression of PsbO and PsbP protein expression in photosystem II of Arabidopsis . Photosynth Res 98, 439–448 (2008). https://doi.org/10.1007/s11120-008-9352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9352-8

Keywords

Navigation