Skip to main content
Log in

After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347–366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EGT:

Endosymbiotic gene transfer

EST:

Expressed sequence tag (cDNA sequence)

HGT:

Lateral or horizontal gene transfer

LHC:

Light-harvesting complex

References

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. BioEssays 29:392–402

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Aury JM, Jaillon O et al (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  CAS  PubMed  Google Scholar 

  • Bachvaroff TR, Sanchez-Puerta MV, Delwiche CF (2005) Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22:1772–1782

    Article  CAS  PubMed  Google Scholar 

  • Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes and stramenopiles. Mol Biol Evol 27:1698–1709

    Article  CAS  PubMed  Google Scholar 

  • Becker B, Hoef-Embden K, Melkonian M (2008) Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol 8:203

    Article  PubMed  Google Scholar 

  • Bodył A, Mackiewicz P, Milanowski R (2010) Did trypanosomatid parasites contain a eukaryotic alga-derived plastid in their evolutionary past? J Parasitol 96:463–475

    Google Scholar 

  • Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PloS ONE 2:e790

    Article  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12:R62–R64

    Article  CAS  PubMed  Google Scholar 

  • Dagan T, Martin W (2009) Seeing green and red in diatom genomes. Science 324:1651–1652

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Rev Genet 6:361–375

    Article  CAS  PubMed  Google Scholar 

  • Deschamps P, Moreira D (2009) Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol Biol Evol 26:2745–2753

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu XN, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M et al (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286

    Article  PubMed  Google Scholar 

  • Elias M, Archibald JM (2009) Sizing up the genomic footprint of endosymbiosis. BioEssays 31:1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667

    Article  CAS  PubMed  Google Scholar 

  • Gajadhar AA, Marquardt WC, Hall R, Gunderson J, Ariztia-Carmona EV, Sogin ML (1991) Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol 45:147–154

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann NY Acad Sci 175:454–473

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361:193–208

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (2006) Looking at life: from binoculars to the electron microscope. Annu Rev Plant Biol 57:1–17

    Article  CAS  PubMed  Google Scholar 

  • Gillott MA, Gibbs SP (1980) The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol 16:558–568

    Article  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9571

    Article  CAS  PubMed  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice-Hall. Upper Saddle River, NJ, USA

    Google Scholar 

  • Grauvogel C, Brinkmann H, Petersen J (2007) Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes. Mol Biol Evol 24:1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Green BR (2004) The chloroplast genome of dinoflagellates—A reduced instruction set? Protist 155:23–31

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Anderson JM, Parson WW (2003) Photosynthetic membranes and their light-harvesting antennas. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Press, Dordrecht, pp 1–28

    Google Scholar 

  • Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534

    Article  CAS  Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Mol Biol Evol 24:1702–1713

    Article  CAS  PubMed  Google Scholar 

  • Hampl V, Hug V, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of excavata and resolve relationships among eukaryotic “supergroups’’. Proc Natl Acad Sci USA 106:3859–3864

    Article  CAS  PubMed  Google Scholar 

  • Helfrich M, Bommer B, Oster U, Klement H, Mayer K, Larkum AWD, Rüdiger W (2003) Chlorophylls of the c family: absolute configuation and inhibition of NADPH:protochlorophyllide oxidoreductase. Biochim Biophys Acta 1605:97–103

    Article  CAS  PubMed  Google Scholar 

  • Howe CJ, Nisbet RER, Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99

    Article  PubMed  Google Scholar 

  • Iida K, Takishita K, Ohshima K, Inagaki Y (2007) Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. Mol Phylogen Evol 45:227–238

    Article  CAS  Google Scholar 

  • Inagaki Y, Nakajima Y, Sato M, Sakaguchi M, Hashimoto T (2009) Gene sampling can bias multi-gene phylogenetic inferences: the relationship between red algae and green plants as a case study. Mol Biol Evol 26:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    Article  PubMed  Google Scholar 

  • Johnson MD (2010) The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth Res. doi:10.1007/s11120-010-9546-8

  • Keeling PJ (2009) Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 19:613–619

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc B 365:729–748

    Article  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryote evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Parks N, Kozera C, Curtis B, Parsons B, Bowman S, Archibald J (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse CT, Lambert G, Anderson RA, Coffroth MA, Galbraith DW (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886

    Article  CAS  Google Scholar 

  • Lane CE, Khan H, MacKinnon M, Fong A, Theophilou S, Archibald JM (2006) Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Mol Biol Evol 23:856–865

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    Article  CAS  PubMed  Google Scholar 

  • Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195

    Article  CAS  PubMed  Google Scholar 

  • Lau AOT, McElwain TF, Brayton KA, Knowles DP, Roalson EH (2009) Babesia bovis: a comprehensive phylogenetic analysis of plastid-encoded genes supports green algal origin of apicoplasts. Exp Parasitol 123:236–243

    Article  CAS  PubMed  Google Scholar 

  • Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253

    Article  PubMed  Google Scholar 

  • Li S, Nosenko T, Hackett JD, Bhattachary D (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol Biol Evol 23:663–674

    Article  PubMed  Google Scholar 

  • Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans Roy Soc B 365:749–763

    Article  CAS  Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20

    Article  Google Scholar 

  • Ludwig M, Gibbs SP (1989) Evidence that the nucleomorphs of Chlorarachnion reptans (Chlorarachniophyceae) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence. J Phycol 25:385–394

    Article  Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Matsuzaki M, Misawa K, Nozaki H (2009) Cyanobacterial contribution to the genomes of the plastid-lacking protists. BMC Evol Biol 9:197

    Article  PubMed  Google Scholar 

  • McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:482

    Article  CAS  PubMed  Google Scholar 

  • Moore RB, Oborník M, Janouškovec J, Chrudimsky T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K, Šlapeta J, Hoegh-Guldberg O, Logsdon JM, Carter D (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Reyes-Prieto A, Bhattacharya D (2008) Chlamydiae has contributed at least 55 genes to plantae with predominantly plastid functions. PloS ONE 3:e2205

    Article  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • NCBI Organelle Genome Resources (2010) http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=2759&opt=plastid

  • Nelson MJ, Dang Y, Filek E, Zhang A, Yu VWC, Ishida K, Green BR (2007) Identification and transcription of transfer RNA genes in dinoflagellate plastid minicircles. Gene 392:291–298

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880

    Article  PubMed  Google Scholar 

  • Oborník M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353

    Article  PubMed  Google Scholar 

  • Oborník M, Janouškovec J, Chrudimsky T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12

    Article  PubMed  Google Scholar 

  • Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose-1, 6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Euk Cell 3:1169–1175

    Article  CAS  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol 62:143–157

    Article  CAS  PubMed  Google Scholar 

  • Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden DI (2004) Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:1–15

    Article  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol Phylogenet Evol 45:384–391

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Prieto A, Moustafa A, Bhattacharya D (2008) Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 18:956–962

    Article  CAS  PubMed  Google Scholar 

  • Rice D, Palmer J (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31

    Article  PubMed  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants red algae and glaucophytes. Curr Biol 15:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF (2007) Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 17:1420–1425

    Article  CAS  PubMed  Google Scholar 

  • Rogers MB, Keeling PJ (2004) Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae. J Mol Evol 58:367–375

    Article  CAS  PubMed  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007a) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  CAS  PubMed  Google Scholar 

  • Rogers MB, Watkins RF, Harper JT, Durnford DG, Gray MW, Keeling PJ (2007b) A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 7:89

    Article  PubMed  Google Scholar 

  • Rüdiger W, Grimm B (2006) Chlorophyll metabolism, an overview. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 133–146

    Google Scholar 

  • Sanchez-Puerta MV, Delwiche CF (2007) A hypothesis for plastid evolution in chromalveolates. J Phycol 44:1097–1107

    Article  Google Scholar 

  • Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF (2007) Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol 44:885–897

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Clough B, Coates L, Wilson RJM (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155:117–125

    Article  CAS  PubMed  Google Scholar 

  • Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C (2009) Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484

    Article  PubMed  Google Scholar 

  • Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    Article  CAS  PubMed  Google Scholar 

  • Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J (2007) Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158:263–276

    Article  CAS  PubMed  Google Scholar 

  • Tyler BM et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    Article  CAS  PubMed  Google Scholar 

  • Waller RF, Patron NJ, Keeling PJ (2006) Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Microbiol 56:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Joly S, Morse D (2008) Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes. J Mol Evol 66:175–184

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JW, McConkey GA, Westhead DR (2009) The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 10:R36

    Article  PubMed  Google Scholar 

  • Wilson RJM (2004) Plastid functions in the Apicomplexa. Protist 155:11–12

    Article  CAS  PubMed  Google Scholar 

  • Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 39–53

    Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the Natural Sciences and Engineering Research Council of Canada for continuing support of my research, and for its wisdom in funding research on organelle genomes and protist gene expression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverley R. Green.

Additional information

Dedicated to Sally (Sarah P.) Gibbs in recognition of the enormous impact her insight into the role of secondary endosymbiosis in algal evolution has had on our current picture of the Tree of Life. For a first-hand description of the intellectual process and rigorous observations that led her to this insight, see Gibbs (2006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, B.R. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c . Photosynth Res 107, 103–115 (2011). https://doi.org/10.1007/s11120-010-9584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9584-2

Keywords

Navigation