Skip to main content
Log in

Conduct Disorder: Biology and Developmental Trajectories

  • Review Article
  • Published:
Psychiatric Quarterly Aims and scope Submit manuscript

Abstract

For centuries, attempting a successful rehabilitation of youth with antisocial behaviors has challenged juvenile justice systems and society. More recently, advances in science and neuroimaging have permitted a deeper understanding of the biological underpinnings of antisocial behavior and psychopathic tendencies. This paper reviews biological findings in youth with conduct disorder, highlighting comparisons to biological findings in adults with antisocial personality disorder and psychopathy. Overall, youth with conduct disorder exhibit several biological findings that are similar to adults with antisocial personality disorder and psychopathy, consistent with theories that conduct disorder is a neurodevelopmental disorder that progresses to these adult conditions. There is evidence that treatment interventions might mitigate this progression and induce biological changes. Further, biological findings might guide interventions to rehabilitate youth and change the developmental trajectory of antisocial behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th ed. Arlington: American Psychiatric Association; 2013.

    Google Scholar 

  2. Gao Y, Glenn AL, Schug RA, et al. The neurobiology of psychopathy: a neurodevelopmental perspective. Can J Psychiatr. 2009;54(12):813–23.

    Google Scholar 

  3. McDonough-Caplan HM, Beauchaine TP. Conduct disorder: a neurodevelopmental perspective. In: Martel M, editor. Developmental pathways to disruptive, impulse-control, and conduct disorders. London: Academic/Elselvier Inc; 2018. p. 53–89.

    Google Scholar 

  4. Moffitt TE. Adolescence-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychol Rev. 1993;100(4):674–701.

    CAS  PubMed  Google Scholar 

  5. Moffitt TE, Arseneault L, Jaffee SR, et al. Research review: DSM-V conduct disorder: research needs for an evidence base. J Child Psychol Psychiatry. 2008;49(1):3–33.

    PubMed  PubMed Central  Google Scholar 

  6. Moffitt TE, Caspi A, Harrington H, et al. Males on the life-course-persistent and adolescence-limited antisocial pathways: follow-up at age 26 years. Dev Psychopathol. 2002;14(1):179–207.

    PubMed  Google Scholar 

  7. Moore AA, Silberg JL, Roberson-Nay R, et al. Life course persistent and adolescence limited conduct disorder in a nationally representative US sample: prevalence, predictors, and outcomes. Soc Psychiatry Psychiatr Epidemiol. 2017;52(4):435–43.

    PubMed  PubMed Central  Google Scholar 

  8. Frick PJ. Extending the construct of psychopathy to youth: implications for understanding, diagnosing, and treating antisocial children and adolescents. Can J Psychiatr. 2009;54(12):803–12.

    Google Scholar 

  9. Lynam DR, Caspi A, Moffitt TE, et al. Longitudinal evidence that psychopathy scores in early adolescence predict adult psychopathy. J Abnorm Psychol. 2007 Feb;116(1):155–65.

    PubMed  PubMed Central  Google Scholar 

  10. Taber KH, Lindstrom CM, Hurley RA. Neural substrates of antisocial personality disorder: current state and future directions. J Neuropsychiatr Clin Neurosci. 2016;28(4):256–61.

    Google Scholar 

  11. Glenn AL, Johnson AK, Raine A. Antisocial personality disorder: a current review. Curr Psychiatry Rep. 2013;15(12):427.

    PubMed  Google Scholar 

  12. Werner KB, Few LR, Bucholz KK. Epidemiology, comorbidity, and behavioral genetics of antisocial personality disorder and psychopathy. Psychiatr Ann. 2015;45(4):195–9.

    PubMed  PubMed Central  Google Scholar 

  13. Cleckley HM. The mask of sanity; an attempt to reinterpret the so-called psychopathic personality. The C.V. Mosby Company: St. Louis; 1941.

    Google Scholar 

  14. Glenn AL, Raine A. Psychopathy: an introduction to biological findings and their implications. New York: New York University Press; 2014.

    Google Scholar 

  15. Van Goozen SHM, Fairchild G. How can the study of biological processes help design new interventions for children with severe antisocial behavior? Dev Psychopathol. 2008;20(3):941–73.

    PubMed  Google Scholar 

  16. Loney BR, Butler MA, Lima EN. The relation between salivary cortisol, callous-unemotional traits, and conduct problems in an adolescent non-referred sample. J Child Psychol Psychiatry. 2006;47(1):30–6.

    PubMed  Google Scholar 

  17. O’Leary MM, Loney BR, Eckel LA, et al. Gender differences in the association between psychopathic personality traits and cortisol response to induced stress. Psychoneuroendocrinology. 2007;32(2):183–91.

    PubMed  Google Scholar 

  18. Holi M, Auvinen-Lintunen L, Lindberg N, et al. Inverse correlation between severity of psychopathic traits and serum cortisol levels in young adult violent male offenders. Psychopathology. 2006;39(2):102–4.

    PubMed  Google Scholar 

  19. Cima M, Smeets T, Jelicic M, et al. Self-reported trauma, cortisol levels, and aggression in psychopathic and non-psychopathic prison inmates. Biol Psychol. 2008;78(1):75–86.

    PubMed  Google Scholar 

  20. Fairchild G, van Goozen SH, Stollery SJ, et al. Cortisol diurnal rhythm and stress reactivity in male adolescents with early-onset or adolescence-onset conduct disorder. Biol Psychiatry. 2008;64(7):599–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Northover C, Thapar A, Langley K, et al. Cortisol levels at baseline and under stress in adolescent males with attention-deficit hyperactivity disorder, with or without comorbid conduct disorder. Psychiatry Res. 2016;242:130–6.

    PubMed  PubMed Central  Google Scholar 

  22. Salis KL, Bernard K, Black SR, et al. Examining the concurrent and longitudinal relationship between diurnal cortisol rhythms and conduct problems during childhood. Psychoneuroendocrinology. 2016;71:147–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. von Polier GG, Herpertz-Dahlmann B, Konrad K, et al. Reduced cortisol in boys with early-onset conduct disorder and callous-unemotional traits. Biomed Res Int. 2013;2013:1–9.

    Google Scholar 

  24. Bakker-Huvenaars MJ, Greven CU, Herpers P, et al. Saliva oxytocin, cortisol, and testosterone levels in adolescent boys with autism spectrum disorder, oppositional defiant disorder/conduct disorder and typically developing individuals. Eur Neuropsychopharmacol. 2018.

  25. Moore TM, Scarpa A, Raine A, et al. A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggress Behav. 2002;28(4):299–316.

    CAS  Google Scholar 

  26. Işık Ü, Bilgiç A, Toker A, et al. Serum levels of cortisol, dehydroepiandrosterone, and oxytocin in children with attention-deficit/hyperactivity disorder combined presentation with and without comorbid conduct disorder. Psychiatry Res. 2018;261:212–9.

    PubMed  Google Scholar 

  27. Glenn AL, Raine A, Schug RA, et al. Increased testosterone-to-cortisol ratio in psychopathy. J Abnorm Psychol. 2011;120(2):389–99.

    PubMed  PubMed Central  Google Scholar 

  28. Levy T, Bloch Y, Bar-Maisels M, et al. Salivary oxytocin in adolescents with conduct problems and callous-unemotional traits. Eur Child Adolesc Psychiatry. 2015;24(12):1543–51.

    PubMed  Google Scholar 

  29. Levy T, Apter A, Djalovski A, et al. The reliability, concurrent validity and association with salivary oxytocin of the self-report version of the inventory of callous-unemotional traits in adolescents with conduct disorder. Psychiatry Res. 2017;256:124–9.

    PubMed  Google Scholar 

  30. Fairchild G, Van Goozen SH, Calder AJ, et al. Deficits in facial expression recognition in male adolescents with early-onset or adolescence-onset conduct disorder. J Child Psychol Psychiatry. 2009;50(5):627–36.

    PubMed  PubMed Central  Google Scholar 

  31. Fanti KA. Understanding heterogeneity in conduct disorder: a review of psychophysiological studies. Neurosci Biobehav Rev. 2018;91:4–20.

    PubMed  Google Scholar 

  32. Susman EJ, Peckins MK, Bowes JL, et al. Longitudinal synergies between cortisol reactivity and diurnal testosterone and antisocial behavior in young adolescents. Dev Psychopathol. 2017;29(4):1353–69.

    PubMed  Google Scholar 

  33. Alink LR, van Ijzendoorn MH, Bakermans-Kranenburg MJ, et al. Cortisol and externalizing behavior in children and adolescents: mixed meta-analytic evidence for the inverse relation of basal and reactivity with externalizing behavior. Dev Psychobiol. 2008;50(5):427–50.

    CAS  PubMed  Google Scholar 

  34. Hawes DJ, Brennan J, Dadds MR. Cortisol, callous-unemotional traits, and pathways to antisocial behavior. Curr Opin Psychiatry. 2009;22(4):357–62.

    PubMed  Google Scholar 

  35. Shenk CE, Dorn LD, Kolko DJ, et al. Predicting treatment response for oppositional defiant and conduct disorder using pre-treatment adrenal and gonadal hormones. J Child Fam Stud. 2012;21(6):973–81.

    PubMed  PubMed Central  Google Scholar 

  36. van Goozen SH, Matthys W, Cohen-Kettenis PT, et al. Adrenal androgens and aggression in conduct disorder prepubertal boys and normal controls. Biol Psychiatry. 1998;43(2):156–8.

    PubMed  Google Scholar 

  37. Dmitrieva TN, Oades RD, Hauffa BP, et al. Dehydroepiandrosterone sulphate and corticotropin levels are high in young male patients with conduct disorder: comparisons for growth factors, thyroid and gonadal hormones. Neuropsychobiology. 2001;43(3):134–40.

    CAS  PubMed  Google Scholar 

  38. Snoek H, van Goozen SH, Matthys W, et al. Serotonergic functioning in children with oppositional defiant disorder: a sumatriptan challenge study. Biol Psychiatry. 2002;51(4):319–25.

    CAS  PubMed  Google Scholar 

  39. Raine A, Lencz T, Bihrle S, et al. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry. 2000;57(2):119–27.

    CAS  PubMed  Google Scholar 

  40. Crego C, Widiger TA. Antisocial-psychopathic personality disorder. In: Martel M, editor. Developmental pathways to disruptive, impulse-control, and conduct disorders. London: Academic/Elselvier Inc; 2018. p. 91–118.

    Google Scholar 

  41. Raine A. Annotation: the role of prefrontal deficits, low autonomic arousal, and early health factors in the development of antisocial and aggressive behavior in children. J Child Psychol Psychiatry. 2002;43(4):417–34.

    PubMed  Google Scholar 

  42. Ortiz J, Raine A. Heart rate level and antisocial behavior in children and adolescents: a meta-analysis. J Am Acad Child Adolesc Psychiatry. 2004;43(2):154–62.

    PubMed  Google Scholar 

  43. Lorber MF. Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis. Psychol Bull. 2004;130(4):531–52.

    PubMed  Google Scholar 

  44. Schoorl J, van Rijn S, de Wied M, et al. Neurobiological stress responses predict aggression in boys with oppositional defiant disorder/conduct disorder: a 1-year follow-up intervention study. Eur Child Adolesc Psychiatry. 2017;26(7):805–13.

    PubMed  PubMed Central  Google Scholar 

  45. Latvala A, Kuja-Halkola R, Almqvist C, et al. A longitudinal study of resting and violent criminality in more than 700 000 men. JAMA Psychiat. 2015;72(10):971–8.

    Google Scholar 

  46. Raine A, Venables PH, Mednick SA. Low resting heart rate at age 3 years predisposes to aggression at age 11 years: evidence from the Mauritius child health project. J Am Acad Child Adolesc Psychiatry. 1997;36(10):1457–64.

    CAS  PubMed  Google Scholar 

  47. van Bokhoven I, Matthys W, van Goozen SH, et al. Prediction of adolescent outcome in children with disruptive behaviour disorders--a study of neurobiological, psychological and family factors. Eur Child Adolesc Psychiatry. 2005;14(3):153–63.

    PubMed  Google Scholar 

  48. White SF, Marsh AA, Fowler KA, et al. Reduced amygdala response in youths with disruptive behavior disorders and psychopathic traits: decreased emotional response versus increased top-down attention to nonemotional features. Am J Psychiatry. 2012;169(7):750–8.

    PubMed  Google Scholar 

  49. Yang Y, Raine A, Narr KL, et al. Localization of deformations within the amygdala in individuals with psychopathy. Arch Gen Psychiatry. 2009;66(9):986–94.

    PubMed  PubMed Central  Google Scholar 

  50. Birbaumer N, Veit R, Lotze M, et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2005;62(7):799–805.

    PubMed  Google Scholar 

  51. Glenn AL, Raine A, Schug RA, et al. The neural correlates of moral decision-making in psychopathy. Mol Psychiatry. 2009;14(1):5–6.

    CAS  PubMed  Google Scholar 

  52. Gordon HL, Baird AA, End A, et al. Functional differences among those high and low on a trait measure of psychopathy. Biol Psychiatry. 2004;56(7):516–21.

    PubMed  Google Scholar 

  53. Kiehl KA. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Res. 2006;142(2–3):107–28.

    PubMed  PubMed Central  Google Scholar 

  54. Broulidakis MJ, Fairchild G, Sully K, et al. Reduced default mode connectivity in adolescents with conduct disorder. J Am Acad Child Adolesc Psychiatry. 2016;55(9):800–8.

    PubMed  Google Scholar 

  55. Umbach R, Berryessa CM, Raine A, et al. Brain imaging research on psychopathy: implications for punishment, prediction, and treatment in youth and adults. J Crime Justice. 2015;43:295–306.

    Google Scholar 

  56. Marsh AA, Finger EC, Fowler KA, et al. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Res. 2011;194(3):279–86.

    PubMed  PubMed Central  Google Scholar 

  57. Buckholtz JW, Treadway MT, Cowan RL, et al. Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nat Neurosci. 2010;13(4):419–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Finger EC, Marsh AA, Mitchell DG, et al. Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Arch Gen Psychiatry. 2008;65(5):586–94.

    PubMed  PubMed Central  Google Scholar 

  59. De Brito SA, Mechelli A, Wilke M, et al. Size matters: increased grey matter in boys with conduct problems and callous-unemotional traits. Brain. 2009;132(Pt 4):843–52.

    PubMed  Google Scholar 

  60. Yang Y, Raine A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 2009;174(2):81–8.

    PubMed  PubMed Central  Google Scholar 

  61. de Oliveira-Souza R, Hare RD, Bramati IE, et al. Psychopathy as a disorder of the moral brain: fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. Neuroimage. 2008;40(3):1202–13.

    PubMed  Google Scholar 

  62. Harenski CL, Harenski KA, Shane MS, et al. Aberrant neural processing of moral violations in criminal psychopaths. J Abnorm Psychol. 2010;119(4):863–74.

    PubMed  PubMed Central  Google Scholar 

  63. Craig MC, Catani M, Deeley Q, et al. Altered connections on the road to psychopathy. Mol Psychiatry. 2009;14(10):946–53.

    CAS  PubMed  Google Scholar 

  64. Raine A, Lee L, Yang Y, et al. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy. Br J Psychiatry. 2010;197(3):186–92.

    PubMed  PubMed Central  Google Scholar 

  65. Raine A, Lencz T, Taylor K, et al. Corpus callosum abnormalities in psychopathic antisocial individuals. Arch Gen Psychiatry. 2003;60(11):1134–42.

    PubMed  Google Scholar 

  66. Leijten P, Gardner F, Landau S, et al. Research review: harnessing the power of individual participant data in a meta-analysis of the benefits and harms of the incredible years parenting program. J Child Psychol Psychiatry. 2018 Feb;59(2):99–109.

    PubMed  Google Scholar 

  67. Bakker MJ, Greven CU, Buitelaar JK, et al. Practitioner review: psychological treatments for children and adolescents with conduct disorder problems – a systematic review and meta-analysis. J Child Psychol Psychiatry. 2017;58(1):4–18.

    CAS  PubMed  Google Scholar 

  68. Social Programs that Work. Evidence summary for the Perry Preschool Project. Social Programs that Work Review, updated November 2017.

  69. Cornet LJ, de Kogel CH, Nijman HL, et al. Neurobiological factors as predictors of cognitive-behavioral therapy outcome in individuals with antisocial behavior: a review of the literature. Int J Offender Ther Comp Criminol. 2014;58(11):1279–96.

    PubMed  Google Scholar 

  70. Cornet LJ, de Kogel CH, Nijman HL, et al. Neurobiological changes after intervention in individuals with anti-social behaviour: a literature review. Crim Behav Ment Health. 2015;25(1):10–27.

    PubMed  Google Scholar 

  71. Yang CC, Khalifa N, Völlm B. The effects of repetitive transcranial magnetic stimulation on empathy: a systematic review and meta-analysis. Psychol Med. 2018 Apr;48(5):737–50.

    PubMed  Google Scholar 

  72. Gedeon T, Parry J, Völlm B. The role of oxytocin in antisocial personality disorders: a systematic review of the literature. Front PsychFront Psychiatry. 2019 Feb 27;10:76.

    Google Scholar 

  73. Pickersgill M. ‘Promising’ therapies: neuroscience, clinical practice, and the treatment of psychopathy. Sociol Health Illn. 2011 Mar;33(3):448–64.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Junewicz.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable, as this article does not contain any studies with human participants performed by any of the authors, and thus does not include any individual participants or identifying information.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junewicz, A., Billick, S.B. Conduct Disorder: Biology and Developmental Trajectories. Psychiatr Q 91, 77–90 (2020). https://doi.org/10.1007/s11126-019-09678-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11126-019-09678-5

Keywords

Navigation