Skip to main content
Log in

Material science for quantum computing with atom chips

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where the latter may be utilized for many, if not all, suggested implementations of QC. Material science is important both for enhancing the control coupling to the quantum system for preparation and manipulation as well as measurement, and for suppressing the uncontrolled coupling giving rise to low fidelity through static and dynamic effects such as potential corrugations and noise. As a case study, atom chips for neutral ground state atoms are analyzed and it is shown that nanofabricated wires will allow for more than 104 gate operations when considering spin-flips and decoherence. The effects of fabrication imperfections and the Casimir–Polder force are also analyzed. In addition, alternative approaches to current-carrying wires are briefly described. Finally, an outlook of what materials and geometries may be required is presented, as well as an outline of directions for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steane A.M.: Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003)

    Article  ADS  Google Scholar 

  2. Knill E.: Scalable quantum computing in the presence of large detected-error rates. Phys. Rev. A 71, 042322 (2005)

    Article  ADS  Google Scholar 

  3. Folman R., Krüger P., Schmiedmayer J., Denschlag J., Henkel C.: Controlling cold atoms using nanofabricated surfaces: atom chips. Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Google Scholar 

  4. Reichel J.: Microchip traps and Bose–Einstein condensation. Appl. Phys. B 75, 469 (2002)

    Article  ADS  Google Scholar 

  5. Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  6. Henkel C., Horovitz B.: Noise from metallic surfaces: effects of charge diffusion. Phys. Rev. A 78, 042902 (2008)

    Article  ADS  Google Scholar 

  7. Dubessy R., Coudreau T., Guidoni L.: Electric field noise above surfaces: a model for heating-rate scaling law in ion traps. Phys. Rev. A 80, 031402(R) (2009)

    Article  ADS  Google Scholar 

  8. Daniilidis N., Narayanan S., Möller S.A., Clark R., Lee T.E., Leek P.J., Wallraff A., Schulz St., Schmidt-Kaler F., Häffner H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 13, 013032 (2011)

    Article  ADS  Google Scholar 

  9. Wang S.X., Ge Y., Labaziewicz J., Dauler E., Berggren K., Chuang Isaac L.: Superconducting microfabricated ion traps. Appl. Phys. Lett. 97, 244102 (2010)

    Article  ADS  Google Scholar 

  10. Meek S.A., Conrad H., Meijer G.: Trapping molecules on a chip. Science 324, 1699 (2009)

    Article  ADS  Google Scholar 

  11. Tauschinsky, A., Thijssen, R.M.T., Whitlock, S., van Linden van den Heuvell, H.B., Spreeuw, R.J.C.: Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010)

  12. Kübler H., Shaffer J.P., Baluktsian T., Löw R., Pfau T.: Coherent excitation of Rydberg atoms in thermal vapor microcells. Nat. Photon. 4, 112 (2010)

    Article  ADS  Google Scholar 

  13. Crosse J.A., Ellingsen S.A., Clements K., Buhmann S.Y., Scheel S.: Thermal Casimir–Polder shifts in Rydberg atoms near metallic surfaces. Phys. Rev. A 82, 010901 (2010)

    Article  ADS  Google Scholar 

  14. Carter J.D., Martin J.D.D.: Energy shifts of Rydberg atoms due to patch fields near metal surfaces. Phys. Rev. A 83, 032902 (2011)

    Article  ADS  Google Scholar 

  15. Müller, M.M., Haakh, H.R., Calarco, T., Koch, C.P., Henkel, C.: Prospects for fast Rydberg gates on an atom chip, paper in this issue, arXiv:1104.2739 (2011)

  16. Folman, R., Treutlein, P., Schmiedmayer, J.: Fabrication of atom chips. In: Vuletic, V., Reichel, J. (eds.) Atom Chips (Book by Wiley-VCH) (2011)

  17. Schmied R., Leibfried D., Spreeuw R.J.C., Whitlock S.: Optimized magnetic lattices for ultracold atomic ensembles. New J. Phys. 12, 103029 (2010)

    Article  ADS  Google Scholar 

  18. Fortágh J., Ott H., Kraft S., Günther A., Zimmermann C.: Surface effects in magnetic microtraps. Phys. Rev. A 66, 041604 (2002)

    Article  ADS  Google Scholar 

  19. Jones M.P.A., Vale C.J., Sahagun D., Hall B.V., Hinds E.A.: Spin coupling between cold atoms and the thermal fluctuations of a metal surface. Phys. Rev. Lett. 91, 080401 (2003)

    Article  ADS  Google Scholar 

  20. Estève J., Aussibal C., Schumm T., Fig C., Maill D., Bouchoul I., Westbrook C.I., Aspect A.: Role of wire imperfections in micromagnetic traps for atoms. Phys. Rev. A 70, 043629 (2004)

    Article  ADS  Google Scholar 

  21. Wildermuth S., Hofferberth S., Lesanovsky I., Haller E., Andersson L.M., Groth S., Bar-Joseph I., Krüger P., Schmiedmayer J.: Bose–Einstein condensates: microscopic magnetic-field imaging. Nature 435, 440 (2005)

    Article  ADS  Google Scholar 

  22. Aigner S., Della Pietra L., Japha Y., Entin-Wohlman O., David T., Salem R., Folman R., Schmiedmayer J.: Long-range order in electronic transport through disordered metal films. Science 319, 1226 (2008)

    Article  ADS  Google Scholar 

  23. Emmert A., Lupaşcu A., Nogues G., Brune M., Raimond J.-M., Haroche S.: Measurement of the trapping lifetime close to a cold metallic surface on a cryogenic atom-chip. Eur. Phys. J. D 51, 173 (2009)

    Article  ADS  Google Scholar 

  24. Dikovsky V., Japha Y., Henkel C., Folman R.: Reduction of magnetic noise in atom chips by material optimization. Eur. Phys. J. D 35, 87 (2005)

    Article  ADS  Google Scholar 

  25. Trebbia J.-B., Garrido Alzar C.L., Cornelussen R., Westbrook C.I., Bouchoule I.: Roughness suppression via rapid current modulation on an atom chip. Phys. Rev. Lett. 98, 263201 (2007)

    Article  ADS  Google Scholar 

  26. Fermani R., Scheel S., Knight P.L.: Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir–Polder potential. Phys. Rev. A 75, 062905 (2007)

    Article  ADS  Google Scholar 

  27. Japha Y., Entin-Wohlman O., David T., Salem R., Aigner S., Schmiedmayer J., Folman R.: Model for organized current patterns in disordered conductors. Phys. Rev. B 77, 201407(R) (2008)

    Article  ADS  Google Scholar 

  28. David T., Japha Y., Dikovsky V., Salem R., Henkel C., Folman R.: Magnetic interactions of cold atoms with anisotropic conductors. Eur. Phys. J. D 48, 321 (2008)

    Article  ADS  Google Scholar 

  29. Sinuco-León G., Kaczmarek B., Krüger P., Fromhold T.M.: Atom chips with two-dimensional electron gases: theory of near-surface trapping and ultracold-atom microscopy of quantum electronic systems. Phys. Rev. A 83, 021401(R) (2011)

    Article  ADS  Google Scholar 

  30. Milton, K.A.: Resource Letter VWCPF-1: Van der Waals and Casimir–Polder forces, arXiv:1101.2238v2 (2011)

  31. Lin Y.J., Teper I., Chin C., Vuletić V.: Impact of the Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004)

    Article  ADS  Google Scholar 

  32. Obrecht J.M., Wild R.J., Antezza M., Pitaevskii L.P., Stringari S., Cornell E.A.: Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98, 063201 (2007)

    Article  ADS  Google Scholar 

  33. Sandoghdar V., Sukenik C.I., Hinds E.A.: Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432 (1992)

    Article  ADS  Google Scholar 

  34. Sukenik C.I., Boshier M.G., Cho D., Sandoghdar V., Hinds E.A.: Measurement of the Casimir–Polder force. Phys. Rev. Lett. 70, 560 (1993)

    Article  ADS  Google Scholar 

  35. Lepoutre S., Lonij V.P.A., Jelassi H., Trénec G., Büchner M., Cronin A.D., Vigué J.: Atom interferometry measurement of the atom-surface van der Waals interaction. Eur. Phys. J. D 62, 309 (2011)

    Article  ADS  Google Scholar 

  36. Gierling M., Schneeweiss P., Visanescu G., Federsel P., Häffner M., Kern D.P., Judd T.E., Günther A., Fortágh J.: Cold-atom scanning probe microscopy. Nat. Nanotechnol. 6, 446 (2011)

    Article  ADS  Google Scholar 

  37. Haakh, H.R., Henkel, C.: Magnetic near fields as a probe of charge transport in spatially dispersive conductors, arXiv:1107.2268v1 (2011)

  38. Ovchinnikov Yu B., Shulga S.V., Balykin V.I.: An atomic trap based on evanescent light waves. J. Phys. B 24, 3173 (1991)

    Article  ADS  Google Scholar 

  39. Schmiedmayer J.: Quantum wires and quantum dots for neutral atoms. Eur. Phys. J. D 4, 57 (1998)

    Article  ADS  Google Scholar 

  40. Shevchenko A., Lindvall T., Tittonen I., Kaivola M.: Microscopic electro-optical atom trap on an evanescent-wave mirror. Eur. Phys. J. D 28, 273 (2004)

    Article  ADS  Google Scholar 

  41. Rosenblit M., Japha Y., Horak P., Folman R.: Simultaneous optical trapping and detection of atoms by microdisk resonators. Phys. Rev. A 73, 063805 (2006)

    Article  ADS  Google Scholar 

  42. Ricci L., Bassi D., Bertoldi A.: Combined static potentials for confinement of neutral species. Phys. Rev. A 76, 023428 (2007)

    Article  ADS  Google Scholar 

  43. Bender H., Courteille P., Zimmermann C., Slama S.: Towards surface quantum optics with Bose–Einstein condensates in evanescent waves. Appl. Phys. B 96, 275 (2009)

    Article  ADS  Google Scholar 

  44. Gillen J.I., Bakr W.S., Peng A., Unterwaditzer P., Fölling S., Greiner M.: Two-dimensional quantum gas in a hybrid surface trap. Phys. Rev. A 80, 021602(R) (2009)

    Article  ADS  Google Scholar 

  45. Chang D.E., Thompson J.D., Park H., Vuletić V., Zibrov A.S., Zoller P., Lukin M.D.: Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009)

    Article  ADS  Google Scholar 

  46. Hänsel W., Reichel J., Hommelhoff P., Hänsch T.W.: Trapped-atom interferometer in a magnetic microtrap. Phys. Rev. A 64, 063607 (2001)

    Article  ADS  Google Scholar 

  47. Horikoshi M., Nakagawa K.: Atom chip based fast production of Bose–Einstein condensate. Appl. Phys. B 82, 363 (2006)

    Article  ADS  Google Scholar 

  48. Anderson, D.Z.: Private Communication (2009)

  49. Salem R., Japha Y., Chabé J., Hadad B., Keil M., Milton K.A., Folman R.: Nanowire atomchip traps for sub-micron atom-surface distances. New J. Phys. 12, 023039 (2010)

    Article  ADS  Google Scholar 

  50. Schumm T., Hofferberth S., Andersson L.M., Wildermuth S., Groth S., Bar-Joseph I., Schmiedmayer J., Krüger P.: Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1, 57 (2005)

    Article  Google Scholar 

  51. Jo G.B., Choi J.-H., Christensen C.A., Lee Y.R., Pasquini T.A., Ketterle W., Pritchard D.E.: Matter-wave interferometry with phase fluctuating Bose–Einstein condensates. Phys. Rev. Lett. 99, 240406 (2007)

    Article  ADS  Google Scholar 

  52. Treutlein P., Hänsch T.W., Reichel J., Negretti A., Cirone M.A., Calarco T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006)

    Article  ADS  Google Scholar 

  53. Böhi P., Riedel M.F., Hoffrogge J., Reichel J., Hänsch T.W., Treutlein P.: Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nat. Phys. 5, 592 (2009)

    Article  Google Scholar 

  54. Groth S., Krueger P., Wildermuth S., Folman R., Fernholz T., Mahalu D., Bar-Joseph I., Schmiedmayer J.: Atom chips: fabrication and thermal properties. Appl. Phys. Lett. 85, 2980 (2004)

    Article  ADS  Google Scholar 

  55. Wang D.W., Lukin M.D., Demler E.: Disordered Bose–Einstein condensates in quasi-one-dimensional magnetic microtraps. Phys. Rev. Lett. 92, 076802 (2004)

    Article  ADS  Google Scholar 

  56. Jones M.P.A., Vale C.J., Sahagun D., Hall B.V., Eberlein C.C., Sauer B.E., Furusawa K., Richardson D., Hinds E.A.: Cold atoms probe the magnetic field near a wire. J. Phys. B 37, L15 (2004)

    Article  ADS  Google Scholar 

  57. Whitlock S., Hall B.V., Roach T., Anderson R., Volk M., Hannaford P., Sidorov A.I.: Effect of magnetization inhomogeneity on magnetic microtraps for atoms. Phys. Rev. A 75, 043602 (2007)

    Article  ADS  Google Scholar 

  58. Krüger P., Andersson L.M., Wildermuth S., Hofferberth S., Haller E., Aigner S., Groth S., Bar-Joseph I., Schmiedmayer J.: Potential roughness near lithographically fabricated atom chips. Phys. Rev. A 76, 063621 (2007)

    Article  ADS  Google Scholar 

  59. Krüger, P., Andersson, L.M., Wildermuth, S., Hofferberth, S., Haller, E., Aigner, S., Groth, S., Bar-Joseph, I., Schmiedmayer, J.: Disorder Potentials Near Lithographically Fabricated Atom Chips, eprint arXiv:cond-mat/0504686 (2004)

  60. Krüger, P.: Coherent Matter Waves Near Surfaces. PhD thesis, University of Heidelberg (2004)

  61. Henkel C., Wilkens M.: Heating of trapped atoms near thermal surfaces. Europhys. Lett. 47, 414 (1999)

    Article  ADS  Google Scholar 

  62. Sidles, J.A., Garbini, J.L., Dougherty, W.M., Chao, S.H.: The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy. In: Proceedings of IEEE, vol. 91, p. 799 (2003), preprint quant-ph/0004106

  63. Henkel C., Krüger P., Folman R., Schmiedmayer J.: Fundamental limits for coherent manipulation on atom chips. Appl. Phys. B 76, 174 (2003)

    Article  ADS  Google Scholar 

  64. Henkel C., Pötting S.: Coherent transport of matter waves. Appl. Phys. B 72, 73 (2001)

    ADS  Google Scholar 

  65. Henkel C., Pötting S., Wilkens M.: Loss and heating of particles in small and noisy traps. Appl. Phys. B 69, 379 (1999)

    Article  ADS  Google Scholar 

  66. Fermani R., Scheel S., Knight P.L.: Spatial decoherence near metallic surfaces. Phys. Rev. A 73, 032902 (2006)

    Article  ADS  Google Scholar 

  67. Zhang B., Henkel C.: Magnetic noise around metallic microstructures. J. Appl. Phys. 102, 084907 (2007)

    Article  ADS  Google Scholar 

  68. Landau L.D., Lifshitz E.M.: Quantum Mechanics: Non-Relativistic Theory, 3rd edn. Pergamon, Oxford (1977)

    Google Scholar 

  69. Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  70. It should be noted that considering the noise only at the trap center (as usually done) may not be sufficient, as by doing so one neglects the fact that the trap is commonly spatially inhomogeneous (e.g. harmonic). The atoms are distributed in the trap with a certain density profile, and move as they have finite temperature. Taking this into account introduces corrections to the theory which in some cases may be important

  71. Harber D.M., McGuirk J.M., Obrecht J.M., Cornell E.A.: Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low Temp. Phys. 133, 229 (2003)

    Article  Google Scholar 

  72. Fortágh J., Ott H., Kraft S., Günther A., Zimmermann C.: Surface effects in magnetic microtraps. Phys. Rev. A 66, 041604 (2002)

    Article  ADS  Google Scholar 

  73. Zhang B., Henkel C., Haller E., Wildermuth S., Hofferberth S., Krüger P., Schmiedmayer J.: Relevance of sub-surface chip layers for the lifetime of magnetically trapped atoms. Eur. Phys. J. D 35, 97 (2005)

    Article  ADS  Google Scholar 

  74. Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T.W., Reichel J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)

    Article  ADS  Google Scholar 

  75. Deutsch C., Ramirez-Martinez F., Lacroûte C., Reinhard F., Schneider T., Fuchs J.N., Piéchon F., Laloë F., Reichel J., Rosenbusch P.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010)

    Article  ADS  Google Scholar 

  76. Maussang K., Marti G.E., Schneider T., Treutlein P., Li Y., Sinatra A., Long R., Estéve J., Reichel J.: Enhanced and reduced atom number fluctuations in a BEC splitter. Phys. Rev. Lett. 105, 080403 (2010)

    Article  ADS  Google Scholar 

  77. van Kampen N.G.: A soluble model for quantum mechanical dissipation. J. Stat. Phys. 78, 299 (1995)

    Article  ADS  MATH  Google Scholar 

  78. Palma G.M., Suominen K.-A., Ekert A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. Dalton B.J.: Scaling of decoherence effects in quantum computers. J. Mod. Optics 50, 951 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  80. Doll R., Wubs M., Hänggi P., Kohler S.: Limitation of entanglement due to spatial qubit separation. Europhys. Lett. 76, 547 (2006)

    Article  ADS  Google Scholar 

  81. Malkov M.P., Danilov I.B., Danilov I.B., Fradkov A.B.: Handbook on Physical and Technical Basis of Cryogenics. Energiya, Moskwa (1973)

    Google Scholar 

  82. Lin, Y.-J.: Private Communications

  83. Rytov S.M., Kravtsov Y.A., Tatarskii V.I.: Principles of Statistical Radiophysics III: Elements of Random Fields. Springer, Berlin (1989)

    Google Scholar 

  84. Lifshitz, E.M.: Sov. Phys. JETP 2, 73 (1956); J. Exp. Theor. Phys. USSR 29, 94 (1955)

  85. Tal, D.: PhD thesis, Ben-Gurion University (2009)

  86. Petrov P.G., Machluf S., Younis S., Macaluso R., David T., Hadad B., Japha Y., Keil M., Joselevich E., Folman R.: Trapping cold atoms using surface-grown carbon nanotubes. Phys. Rev. A 79, 043403 (2009)

    Article  ADS  Google Scholar 

  87. Peano V., Thorwart M., Kasper A., Egger R.: Nanoscale atomic waveguides with suspended carbon nanotubes. Appl. Phys. B 81, 1075 (2005)

    Article  ADS  Google Scholar 

  88. Grüner B., Jag M., Stibor A., Visanescu G., Häffner M., Kern D., Günther A., Fortágh J.: Integrated atom detector based on field ionization near carbon nanotubes. Phys. Rev. A 80, 063422 (2009)

    Article  ADS  Google Scholar 

  89. Murphy B., Hau L.V.: Electro-optical nanotraps for neutral atoms. Phys. Rev. Lett. 102, 033003 (2009)

    Article  ADS  Google Scholar 

  90. Roux C., Emmert A., Lupaşcu A., Nirrengarten T., Nogues G., Brune M., Raimond J.-M., Haroche S.: Bose Einstein condensation on a superconducting atom chip. Europhys. Lett. 81, 56004 (2008)

    Article  ADS  Google Scholar 

  91. Dikovsky V., Sokolovsky V., Zhang B., Henkel C., Folman R.: Superconducting atom chips: advantages and challenges. Eur. Phys. J. D 51, 247 (2009)

    Article  ADS  Google Scholar 

  92. Mukai T., Hufnagel C., Kasper A., Meno T., Tsukada A., Semba K., Shimizu F.: Persistent supercurrent atom chip. Phys. Rev. Lett. 98, 260407 (2007)

    Article  ADS  Google Scholar 

  93. Cano D., Kasch B., Hattermann H., Kleiner R., Zimmermann C., Koelle D., Fortágh J.: Meissner effect in superconducting microtraps. Phys. Rev. Lett. 101, 183006 (2008)

    Article  ADS  Google Scholar 

  94. Kasch B., Hattermann H., Cano D., Judd T.E., Scheel S., Zimmermann C., Kleiner R., Koelle D., Fortágh J.: Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit. New J. Phys. 12, 065024 (2010)

    Article  ADS  Google Scholar 

  95. Cano, D., Hattermann, H., Kasch, B., Zimmermann, C.,Kleiner, R., Koelle, D., Fortágh, J.: Experimental system for research on ultracold atomic gases near superconducting microstructures, Eur. Phys. J. D. doi:10.1140/epjd/e2011-10680-8 (2011)

  96. Zhang B., Fermani R., Müller T., Lim M.J., Dumke R.: Design of magnetic traps for neutral atoms with vortices in type-II superconducting microstructures. Phys. Rev. A 81, 063408 (2010)

    Article  ADS  Google Scholar 

  97. Müller T., Zhang B., Fermani R., Chan K.S., Wang Z.W., Zhang C.B., Lim M.J., Dumke R.: Trapping of ultra-cold atoms with the magnetic field of vortices in a thin-film superconducting micro-structure. New J. Phys. 12, 043016 (2010)

    Article  Google Scholar 

  98. Sinclair C.D.J., Curtis E.A., Llorente Garcia I., Retter J.A., Hall B.V., Eriksson S., Sauer B.E., Hind E.A.: Bose–Einstein condensation on a permanent-magnet atom chip. Phys. Rev. A 72, 031603(R) (2005)

    Article  ADS  Google Scholar 

  99. Whitlock S., Gerritsma R., Fernholz T., Spreeuw R.J.C.: Two-dimensional array of microtraps with atomic shift register on a chip. New J. Phys. 11, 023021 (2009)

    Article  ADS  Google Scholar 

  100. Ghanbari S., Blakie P.B., Hannaford P., Kieu T.D.: Superfluid to Mott insulator quantum phase transition in a 2D permanent magnetic lattice. Eur. Phys. J. B 70, 305 (2009)

    Article  ADS  Google Scholar 

  101. Krueger P., Luo X., Klein M.W., Brugger K., Haase A., Wildermuth S., Groth S., Bar-Joseph I., Folman R., Schmiedmayer J.: Trapping and manipulating neutral atoms with electrostatic fields. Phys. Rev. Lett. 91, 233201 (2003)

    Article  ADS  Google Scholar 

  102. Schmiedmayer J.: Quantum wires and quantum dots for neutral atoms. Eur. Phys. J. D 4, 57 (1998)

    Article  ADS  Google Scholar 

  103. Shevchenko A., Lindvall T., Tittonen I., Kaivola M.: Microscopic electro-optical atom trap on an evanescent-wave mirror. Eur. Phys. J. D 28, 273 (2004)

    Article  ADS  Google Scholar 

  104. Leanhardt A., Shin Y., Chikkatur A., Kielpinski D., Ketterle W., Pritchard D.: Bose–Einstein condensates near a microfabricated surface. Phys. Rev. Lett. 90, 100404 (2003)

    Article  ADS  Google Scholar 

  105. Machluf S., Coslovsky J., Petrov P.G., Japha Y., Folman R.: Coupling between internal spin dynamics and external degrees of freedom in the presence of colored noise. Phys. Rev. Lett. 105, 203002 (2010)

    Article  ADS  Google Scholar 

  106. Casimir H.B.G., Polder D.: The influence of retardation on the London–van der Waals forces. Phys. Rev. 73, 360 (1948)

    Article  ADS  MATH  Google Scholar 

  107. Schroll C., Belzig W., Bruder C.: Decoherence of cold atomic gases in magnetic microtraps. Phys. Rev. A 68, 043618 (2003)

    Article  ADS  Google Scholar 

  108. I am grateful to Carsten Henkel for many brainstorming encounters, whether in person or by e-mail

  109. Intravaia F., Henkel C., Lambrecht A.: Role of surface plasmons in the Casimir effect. Phys. Rev. A 76, 033820 (2007)

    Article  ADS  Google Scholar 

  110. Leonhardt U., Philbin T.G.: Quantum levitation by laft-handed metamaterials. New J. Phys. 9, 254 (2007)

    Article  ADS  Google Scholar 

  111. Munday J.N., Capasso F., Parsegian V.A.: Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170 (2009)

    Article  ADS  Google Scholar 

  112. Yannopapas V., Vitanov N.V.: First-principles study of Casimir repulsion in metamaterials. Phys. Rev. Lett. 103, 120401 (2009)

    Article  ADS  Google Scholar 

  113. Pappakrishnan, V., Genov, D.: Casimir–Polder force reversal with metamaterials. url:http://meetings.aps.org/Meeting/SES10/Event/134690

  114. Sambale A., Buhmann S.Y., Dung H.T., Welsch D.G.: Resonant Casimir–Polder forces in planar meta-materials. Phys. Scr. T 135, 014019 (2009)

    Article  ADS  Google Scholar 

  115. Milling A., Mulvaney P., Larson I.: Direct measurement of repulsive van der Waals interactions. J. Colloid Interface Sci. 180, 460 (1996)

    Article  Google Scholar 

  116. Lee S., Sigmund W.M.: Repulsive van der Waals forces for silica and alumina. J. Colloid Interface Sci. 243, 365 (2001)

    Article  Google Scholar 

  117. Tabor R.F., Manica R., Chan D.Y.C., Grieser F., Dagastine R.R.: Repulsive van der Waals forces in soft matter: why bubbles do not stick to walls. Phys. Rev. Lett. 106, 064501 (2011)

    Article  ADS  Google Scholar 

  118. Zhang, B.: Magnetic Fields Near Micro Structured Surfaces: Application to Atom Chips. Ph.D. Thesis, Potsdam (2008)

  119. Scheel S., Rekdal P.K., Knight P.L., Hinds E.A.: Atomic spin decoherence near conducting and superconducting films. Phys. Rev. A 72, 042901 (2005)

    Article  ADS  Google Scholar 

  120. Henkel C.: Magnetostatic field noise near metallic surfaces. Eur. Phys. J. D 35, 59 (2005)

    Article  ADS  Google Scholar 

  121. Bauer S.: Optical properties of a metal film and its application as an infrared absorber and as a beam splitter. Am. J. Phys. 60, 257 (1992)

    Article  ADS  Google Scholar 

  122. Biehs S.A., Reddig D., Holthaus M.: Thermal radiation and near-field energy density of thin metallic films. Eur. Phys. J. B 55, 237 (2007)

    Article  ADS  Google Scholar 

  123. Biehs S.A.: Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials. Eur. Phys. J. B 58, 423 (2007)

    Article  ADS  Google Scholar 

  124. Specht, H.P., Nölleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G.: A Single-Atom Quantum Memory, ArXiv 1103.1528 (2011)

  125. Lev, B.: Magnetic Microtraps for Cavity QED, Bose–Einstein Condensates, and Atom Optics. Ph.D. Thesis, Caltech (2005)

  126. Volz J., Gehr R., Dubois G., Estéve J., Reichel J.: Measurement of the internal state of a single atom without energy exchange. Nature 475, 210 (2011)

    Article  Google Scholar 

  127. Vetsch E., Reitz D., Sague’ G., Schmidt R., Dawkins S.T., Rauschenbeutel A.: Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010)

    Article  ADS  Google Scholar 

  128. Rosenblit M., Horak P., Helsby S., Folman R.: Single-atom detection using whispering gallery modes of microdisk resonators. Phys. Rev. A 70, 053808 (2004)

    Article  ADS  Google Scholar 

  129. Rosenblit M., Japha Y., Horak P., Folman R.: Simultaneous optical trapping and detection of atoms by microdisk resonators. Phys. Rev. A 73, 063805 (2006)

    Article  ADS  Google Scholar 

  130. Rosenblit, M., Horak, P., Fleminger, E., Japha, Y., Folman, R.: Design of microcavity resonators for single-atom detection, J. Nanophoton. 1, 011670 (2007), Special issue

  131. US Patent 7,466,889B1 (2008)

  132. Lapasar, E.H., Kasamatsu, K., Kondo, Y., Nakahara, M., Ohmi, T.: Selective Application of Two-Qubit Gate in Neutral Atom Quantum Computer. url: http://arxiv.org/abs/1101.4300

  133. Kohnen M., Succo M., Petrov P.G., Nyman R.A., Trupke M., Hinds E.A.: An array of integrated atom-photon junctions. Nat. Photon. 5, 3538 (2011)

    Article  Google Scholar 

  134. Wilkens M., Goldstein E., Taylor B., Meystre P.: Fabry-Pérot interferometer for atoms. Phys. Rev. A 47, 2366 (1993)

    Article  ADS  Google Scholar 

  135. Pendry J.B., Martín-Moreno L., Garcia-Vidal F.J.: Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004)

    Article  ADS  Google Scholar 

  136. Purdy T.P., Stamper-Kurn D.M.: Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization. Appl. Phys. B 90, 401 (2008)

    Article  ADS  Google Scholar 

  137. Charron E., Cirone M.A., Negretti A., Schmiedmayer J., Calarco T.: Theoretical analysis of a realistic atom-chip quantum gate. Phys. Rev. A 74, 012308 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Folman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folman, R. Material science for quantum computing with atom chips. Quantum Inf Process 10, 995 (2011). https://doi.org/10.1007/s11128-011-0311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0311-5

Keywords

Navigation