Skip to main content
Log in

Entanglement in dipolar coupling spin system in equilibrium state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the appearance of the entangled states in a one-dimensional finite chain of dipolar-coupling nuclear spins of 1/2 in the conditions of thermodynamic equilibrium. It is shown that entanglement is achieved by the application of a low external magnetic field in which the Zeeman interaction energy is the order of or even less than the dipolar interaction one. When these energies are equal, the critical temperature, i. e. the temperature of the entanglement appearance, coincides with the temperature at which the heat capacity of the spin chain achieves its maximum. The obtained relationship between the critical temperature and the magnetic field can be considered as an entanglement witness. The dependences of the heat capacity on temperature and magnetic field have different character for entangled and separable states and can be served for experimental detection of entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Benenti G., Casati G., Strini G.: Principles of Quantum Computation and Information, vols. I and II. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  3. Amico L., Fazio R., Osterloh A., Vedral V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 885 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett C.H., DiVincenzo D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  MATH  Google Scholar 

  6. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Roos C.F., Kim K., Riebe M., Blatt R.: ‘Designer atoms’ for quantum metrology. Nature 443, 316 (2006)

    Article  ADS  Google Scholar 

  8. Cappellaro P., Emerson J., Boulant N., Ramanathan C., Lloyd S., Cory D.G.: Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005)

    Article  ADS  Google Scholar 

  9. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  10. Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  12. Mintert F., Carvalho A.R.R., Kus M., Buchleitner A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Landau L.D., Lifshits E.M.: Statistical Physics. Butterworth-Heinemann, Oxford (1999)

    MATH  Google Scholar 

  14. Brout R.: Phase Transition. University of Brussels, New York (1968)

    Google Scholar 

  15. Abragam A., Goldman M.: Nuclear Magnetism: Order and Disorder. Clarendon Press, Oxford (1982)

    Google Scholar 

  16. Furman G.B., Meerovich V.M., Sokolovsky V.L.: Entanglement and multiple quantum coherence dynamics in spin clusters. Quantum Inf. Process. 8, 379–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tóth G., Gühne O.: Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005)

    Article  ADS  Google Scholar 

  18. Vedral V., Kashefi E.: Uniqueness of entanglement measure and thermodynamics. Phys. Rev. Lett. 89, 037903 (2002)

    Article  ADS  Google Scholar 

  19. Brandao F.G.S.L., Plenio M.B.: Entanglement theory and the second law. Nat. Phys. 4, 873 (2008)

    Article  Google Scholar 

  20. Barankov R., Polkovnikov A.: Microscopic diagonal entropy and its connection to basic thermodynamic relations. Ann. Phys. 326, 486 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ghosh S., Rosenbaum T.F., Aeppli G., Coppersmith S.: Entangled quantum state of magnetic dipoles. Nature 425, 48 (2003)

    Article  ADS  Google Scholar 

  22. Dowling M.R., Doherty A.C., Bartlett S.D.: Energy as an entanglement witness for quantum many-body systems. Phys. Rev. A 70, 062113 (2004)

    Article  ADS  Google Scholar 

  23. Toth G.: Entanglement witnesses in spin models. Phys. Rev. A 71, 010301(R) (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gong S.-S., Su G.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 80, 012323 (2009)

    Article  ADS  Google Scholar 

  25. Anders J., Kaszlikowski D., Lunkes C., Ohshima T., Vedral V.: Detecting entanglement with a thermometer. New J. Phys. 8, 140 (2006)

    Article  ADS  Google Scholar 

  26. Brukner, C., Vedral, V.: Macroscopic thermodynamical witnesses of quantum entanglement. http://arxiv.org/abs/quant-ph/0406040v1

  27. Furman G.B., Meerovich V.M., Sokolovsky V.L.: Nuclear polarization and entanglement in spin systems. Quantum Inf. Process. 8, 283 (2009)

    Article  MATH  Google Scholar 

  28. Wiesniak M., Vedral V., Brukner C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)

    Article  ADS  Google Scholar 

  29. Brukner C., Vedral V., Zeilinger A.: Crucial role of quantum entanglement in bulk properties of solids. Phys. Rev. A 73, 012110 (2006)

    Article  ADS  Google Scholar 

  30. Wiesniak M., Vedral V., Brukner C.: Heat capacity as an indicator of entanglement. Phys. Rev. B 78, 064108 (2008)

    Article  ADS  Google Scholar 

  31. Doronin S.I.: Multiple quantum spin dynamics of entanglement. Phys. Rev. A 68, 052306 (2003)

    Article  ADS  Google Scholar 

  32. Fel’dman E.B., Pyrkov A.N.: Evolution of spin entanglement and an entanglement witness in multiple-quantum NMR experiments. Pis’ma Zh. Eksp. Teor. Fiz. 88, 454 (2008)

    Google Scholar 

  33. Furman G.B., Meerovich V.M., Sokolovsky V.L.: Dynamics of entanglement in a one-dimensional Ising chain. Phys.Rev. A 78, 042301 (2008)

    Article  ADS  Google Scholar 

  34. Brukner, C., Vedral, V.: Macroscopic thermodynamical witnesses of quantum entanglement. arXiv: 0406040 (quant-ph) (2004)

  35. Wang X.: Effects of anisotropy on thermal entanglement. Phys. Lett. A 281, 101 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wang X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002)

    Article  ADS  Google Scholar 

  37. Asoudeh M., Karimipour V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  38. Zhang G.-F., Li S.-S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  39. Asoudeh M., Karimipour V.: Thermal entanglement of spins in mean-field clusters. Phys. Rev. A 73, 062109 (2006)

    Article  ADS  Google Scholar 

  40. Rossignoli R., Schmiegelow C.T.: Entanglement generation resonances in XY chains. Phys. Rev. A 75, 012320 (2007)

    Article  ADS  Google Scholar 

  41. Abdalla M.S., Lashin E., Sadiek G.: Entropy and variance squeezing for time-dependent two-coupled atoms in an external magnetic field. J. Phys. B 41, 015502 (2008)

    Article  ADS  Google Scholar 

  42. Sadiek G., Lashin E., Abdalla M.S.: Entanglement of a two-qubit system with anisotropic XYZ exchange coupling in a nonuniform time-dependent external magnetic field. Physica B 404, 1719 (2009)

    Article  ADS  Google Scholar 

  43. Wichterich H., Bose S.: Exploiting quench dynamics in spin chains for distant entanglement and quantum communication. Phys. Rev. A 79, 060302(R) (2009)

    Article  ADS  Google Scholar 

  44. Sadiek G., Alkurtass B., Aldossary O.: Entanglement in a time-dependent coupled XY spin chain in an external magnetic field. Phys. Rev. A 82, 052337 (2010)

    Article  ADS  Google Scholar 

  45. Doronin S.I., Pyrkov A.N., Fel’dman E.B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. JETP Lett. 85, 519 (2007)

    Article  Google Scholar 

  46. Doronin S.I., Fel’dman E.B., Kucherov M.M., Pyrkov A.N.: Entanglement of systems of dipolar coupled nuclear spins at the adiabatic demagnetization. J. Phys. Condens. Matter 21, 025601 (2009)

    Article  ADS  Google Scholar 

  47. Furman G.B., Meerovich V.M., Sokolovsky V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 10, 307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Furman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furman, G.B., Meerovich, V.M. & Sokolovsky, V.L. Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf Process 11, 1603–1617 (2012). https://doi.org/10.1007/s11128-011-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0320-4

Keywords

Navigation