Skip to main content
Log in

Differential topology of adiabatically controlled quantum processes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or “anti-crossing” phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The “near crossing” in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarandy M.S., Wu L.A., Lidar D.A.: Consistency of the adiabatic theorem. Quantum Inf. Process. 3, 331 (2004)

    Article  MathSciNet  Google Scholar 

  2. Lidar D.A., Rezakhani A.T., Hamma A.: Adiabatic approximation with exponential accuracy or many-body systems and quantum computation. J. Math. Phys. 50, 102106 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  3. Rezakhani A.T., Pimachev A.K., Lidar D.A.: Accuracy versus run time in an adiabatic quantum search. Phys. Rev. A 82, 052305 (2010)

    Article  ADS  Google Scholar 

  4. Jonckheere E.A., Ahmad F., Gutkin E.: Differential topology of numerical range. Linear Algebra Appl. 279(1-3), 227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. von Neumann J., Wigner E.: Uber das Verhalten von Eigenwerten bei adia-balischen Prozessen. Phys. Zschr. 30, 467 (1929)

    MATH  Google Scholar 

  6. Gutkin E., Jonckheere E.A., Karow M.: Convexity of the joint numerical range: topological and differential geometric viewpoints. Linear Algebra Appl. LAA 376, 143 (2003)

    Article  MathSciNet  Google Scholar 

  7. Jonckheere, E., Shabani, A., Rezakhani, A.: 4th International Symposium on Communications, Control, and Signal Processing (ISCCSP’2010) (Limassol, Cyprus, 2010), Special Session on Quantum Control I. ArXiv:1002.1515v2

  8. Golubitsky M., Guillemin V.: Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14. Springer, New York (1973)

    Book  Google Scholar 

  9. Ahmad, F.: Differential topology of numerical range and robust control analysis. Ph.D. thesis, Department of Electrical Engineering, University of Southern California (1999)

  10. Arnold V.I., Gusein-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps—The Classification of Critical Points, Caustics and Wave Fronts, vol. 1. Birkhäuser, Boston (1985)

    Google Scholar 

  11. Arnold V.I., Gusein-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps —Monodromy and Asymptotics of Integrals, vol. 2. Birkhäuser, Boston (1988)

    Book  Google Scholar 

  12. Arnold, V.I.: The theory of singularities and its applications. Accademia Nationale Dei Lincei; Secuola Normale Superiore Lezioni Fermiane. Press Syndicate of the University of Cambridge, Pisa, Italy (1993)

  13. Arnold, V.: Topological invariants of plane curves and caustics, University Lecture Series; Dean Jacqueline B. Lewis Memorial Lectures, Rutgers University, vol. 5. American Mathematical Society, Providence, RI (1994)

  14. Rezakhani A.T., Kuo W.J., Hamma A., Lidar D.A., Zanardi P.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)

    Article  ADS  Google Scholar 

  15. Cerf, J.: Publications Mathématiques, Institut des Hautes Etudes Scientifiques (I.H.E.S.) (39), p. 5 (1970)

  16. Jonckheere E.A.: Algebraic and Differential Topology of Robust Stability. Oxford University Press, New York (1997)

    Google Scholar 

  17. O’Neill B.: Elementary Differential Geometry. Academic Press, London (1997)

    MATH  Google Scholar 

  18. do Carmo M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  MATH  Google Scholar 

  19. Diaz F.S., Nuno-Ballestros J.: Plane curve diagrams and geometrical applications. Q. J. Math. 59, 1 (2007). 10.1093/qmath/ham039

    Article  Google Scholar 

  20. Harris J.: Algebraic Geometry–A First Course. Springer, New York (1992)

    MATH  Google Scholar 

  21. Kempe J.: Quantum random walks—an introductory overview. Contemp. Phys. 44(4), 307 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  22. Krovi H., Ozols M., Roland J.: Adiabatic condition and the quantum hitting time of Markov chains. Phys. Rev. A 82, 1–022333 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond A. Jonckheere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonckheere, E.A., Rezakhani, A.T. & Ahmad, F. Differential topology of adiabatically controlled quantum processes. Quantum Inf Process 12, 1515–1538 (2013). https://doi.org/10.1007/s11128-012-0445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0445-0

Keywords

Navigation