Skip to main content
Log in

Quantum multidimensional color images similarity comparison

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the representation of quantum multidimensional color image, a complete scheme of solving the similarity of two quantum multidimensional color images is studied in depth. The two cases, the color image with segmentation information and without segmentation information, are considered, respectively. First, two images are connected together to form a new “link-state” according to the specific generation circuit. Then, through the Hadamard transformation on the link-state and repeated observations, the similarity value of the two quantum multidimensional color images is obtained. The simulation experiments, especially the two satellite images with a short interval and the two 3/4-color-alike color images with corresponding segmentation information, also show a wonderful performance, which drives the explorations on the multiple quantum color images processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Xi, M., Sun, J., Xu, W.: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 205(2), 751–759 (2008)

    Article  MATH  Google Scholar 

  3. Chao-Yang, P., Zheng-Wei, Z., Guang-Can, G.: A hybrid quantum encoding algorithm of vector quantization for image compression. Chin. Phys. 15(12), 3039 (2006)

    Article  ADS  Google Scholar 

  4. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAEAN Int. J. Appl. Math. 40(3), 113–123 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. JACIII 15(6), 698–706 (2011)

    Google Scholar 

  7. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  10. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inform. Sci. 186(1), 126–149 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. IEEE Signal Process. Mag. 19(6), 12–32 (2002)

    Article  ADS  Google Scholar 

  13. Tseng, C.C., Hwang, T.M.: Quantum digital image processing algorithms. 16th IPPR Conference on Computer Vision, Graphics and Image Processing, pp. 827–834 (2003)

  14. Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A., Shapira, D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63(1), 012310 (2000)

  15. Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A At. Mol. Opt. Phys. 60(4), 2742 (1999)

    Article  ADS  Google Scholar 

  16. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum. Inf. 9(06), 1459–1497 (2011)

    Article  MATH  Google Scholar 

  17. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Fan, Z., Uppstu, A., Siro, T., Harju, A.: Efficient linear-scaling quantum transport calculations on graphics processing units and applications on electron transport in graphene. Comput. Phys. Commun. 185(1), 28–39 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 5 (2008)

    Article  Google Scholar 

  21. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

  22. Sun, B., Le, P. Q., Iliyasu, A.M., Yan, F., Garcia, J.A., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB \(\alpha \) color space. In: IEEE 7th International Symposium, Intelligent Signal Processing (WISP), pp. 1–6 (2011)

  23. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Ahn, J., Weinacht, T.C., Bucksbaum, P.H.: Information storage and retrieval through quantum phase. Science 287(5452), 463–465 (2000)

    Article  ADS  Google Scholar 

  25. Long, G.L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A At. Mol. Opt. Phys. 64(1), 014303 (2001)

    Article  ADS  Google Scholar 

  26. Yan, F., Le, P.Q., Iliyasu, A.M., Sun, B., Garcia, J.A., Dong, F., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. IEEE Congress on, Evolutionary Computation (CEC), pp. 1–6 (2012)

  27. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68(3), 733 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  28. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A At. Mol. Opt. Phys. 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  29. Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A At. Mol. Opt. Phys. 71(3), 032318 (2005)

    Article  ADS  Google Scholar 

  30. Zuccon, G., Azzopardi, L.: Using the quantum probability ranking principle to rank interdependent documents. Adv. Inf. Retr. 357–369 (2010)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61463016, 61340029, Program for New Century Excellent Talents in University under Grant No. NCET-13-0795, Landing project of science and technique of colleges and universities of Jiangxi Province under Grant No. KJLD14037, Humanities and Social Sciences planning project of Ministry of Education under Grant No. 12YJAZH050, Project of International Cooperation and Exchanges of Jiangxi Province under Grant No. 20141BDH80007, Project of the science and technique funds of Nanchang City Grant No. 2012-KJZC-GY-CXYHZKF-001, “Control Science and Engineering” high-level discipline of Jiangxi Province and Key Laboratory of Advanced Control & Optimization of Jiangxi Province, Project of the postgraduate innovation fund of East China Jiao Tong University No. YC2014-S255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Juan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, RG., Sun, YJ. Quantum multidimensional color images similarity comparison. Quantum Inf Process 14, 1605–1624 (2015). https://doi.org/10.1007/s11128-014-0849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0849-0

Keywords

Navigation