Skip to main content
Log in

Optimal measurements in phase estimation: simple examples

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We identify optimal measurement strategies for phase estimation in different scenarios in which the interferometer acts on two-mode symmetric states. For pure states of a single qubit, we show that optimal measurements form a broad set parametrized with a continuous variable. When the state is mixed, this set reduces to merely two possible measurements. For two-qubit symmetric Werner state, we find the optimal measurement and show that estimation from the population imbalance is optimal only if the state is pure. We also determine the optimal measurements for a wide class of symmetric N-qubit Werner-like states. Finally, for a pure symmetric state of N qubits, we find under which conditions the estimation from the full N-body correlation and from the population imbalance is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that at \(\theta =0\), there is a simple way to reduce the optimal POVM to the simple measurement of population imbalance. Indeed, the following transformation

    $$\begin{aligned} \hat{V}=\exp \left( i\frac{\pi }{2}\frac{\hat{J}_x \hat{J}_y + \hat{J}_y \hat{J}_x}{2}\right) \exp \left( i \frac{\pi }{4} \hat{J}_y\right) . \end{aligned}$$

    applied to the states (31) gives \(\hat{V} |\Psi _1\rangle = |0,2\rangle \), \(\hat{V} |\Psi _2\rangle = |1,1\rangle \) and \(\hat{V} |\Psi _3\rangle = |2,0\rangle \). In this way, we obtain the eigenstates of the \(\hat{J}_z\) operator, and the optimal measurement is based on the determination of the population imbalance. Nevertheless, to accomplish this we needed an additional operation \(\hat{V}\) acting on the state. This transformation is non-local—it correlates the particles, since the product of two angular momentum operators cannot be written as a sum of operators acting on each qubit independently.

  2. The elements of the angular momentum matrix, \(d_{jk}(\theta ) \equiv \langle j \vert \hbox {e}^{-i \theta \hat{J}_y} \vert k \rangle \) are

    $$\begin{aligned} d_{jk}(\theta )= & {} \sqrt{\frac{j!(N-j)!}{k!(N-k)!}}\left[ \sin \frac{\theta }{2} \right] ^{j-k}\left[ \cos \frac{\theta }{2} \right] ^{j+k-N}\\&\times \, P_{N-j}^{j-k,j+k-N}(\cos \theta ), \end{aligned}$$

    where \(P_{n}^{\alpha ,\beta }(x)\) is the Jacobi polynomial.

References

  1. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7, 125–137 (2009)

    Article  MATH  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, M.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  3. Pezzé, L., Smerzi, A.: Quantum theory of phase estimation. In Proceedings of the International School of Physics “Enrico Fermi”, Course 188, Societá Italiana di Fisica, Bologna and IOS Press, Amsterdam (2014)

  4. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, London (1976)

    MATH  Google Scholar 

  5. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  6. Giovannetti, V., Lloyd, S., Maccone, M.: Quantum metrology. Phys. Rev. Lett. 96, 010401-1–010401-5 (2006)

    ADS  MathSciNet  Google Scholar 

  7. Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Squeezed atomic states and projection noise in spectroscopy. Phys Rev. A 50, 67–88 (1994)

    Article  ADS  Google Scholar 

  8. Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)

    Article  ADS  Google Scholar 

  9. Sørensen, A.S., Duan, L.-M., Cirac, J.I., Zoller, P.: Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63–66 (2001)

    Article  ADS  Google Scholar 

  10. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401-1–100401-4 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hyllus, P., et al.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321-1–022321-10 (2012)

    Article  ADS  Google Scholar 

  12. Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322-1–022322-8 (2012)

    Article  ADS  Google Scholar 

  13. Leibfried, D., et al.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  14. Leibfried, D., et al.: Creation of a six-atom Schrödinger cat state. Nature 438, 639–642 (2006)

    Article  ADS  Google Scholar 

  15. Roos, C.F., et al.: Designer atoms for quantum metrology. Nature 443, 316–319 (2006)

    Article  ADS  Google Scholar 

  16. Monz, T., et al.: 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506-1–130506-4 (2011)

    Article  ADS  Google Scholar 

  17. Nagata, T., et al.: Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007)

    Article  ADS  Google Scholar 

  18. Kacprowicz, M., et al.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photonics 4, 357–360 (2010)

    Article  ADS  Google Scholar 

  19. Xiang, G.Y., et al.: Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photonics 5, 43–47 (2011)

    Article  ADS  Google Scholar 

  20. Krischek, R., et al.: Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. Phys. Rev. Lett. 107, 080504-1–080504-5 (2011)

    Article  ADS  Google Scholar 

  21. Appel, J., et al.: Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. PNAS 106, 10960–10965 (2009)

    Article  ADS  Google Scholar 

  22. Schleier-Smith, M.H., Leroux, I.D., Vuletic, V.: States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604-1–073604-4 (2010)

    Article  ADS  Google Scholar 

  23. Chen, Z., et al.: Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. Phys. Rev. Lett. 106, 133601-1–133601-4 (2011)

    ADS  Google Scholar 

  24. Estéve, J., et al.: Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216–1219 (2008)

    Article  ADS  Google Scholar 

  25. Riedel, M.F., et al.: Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010)

    Article  ADS  Google Scholar 

  26. Ockeloen, C.F., et al.: Quantum metrology with a scanning probe atom interferometer. Phys. Rev. Lett. 111, 143001-1–143001-5 (2013)

    Article  ADS  Google Scholar 

  27. Gross, C., et al.: Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010)

    Article  ADS  Google Scholar 

  28. Lücke, B., et al.: Twin matter waves for interferometry beyond the classical limit. Science 11, 773–776 (2011)

    Article  Google Scholar 

  29. Berrada, T., et al.: Integrated MachZehnder interferometer for BoseEinstein condensates. Nat. Commun. 4(2077), 1–8 (2013)

    Google Scholar 

  30. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135–173 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Pezzé, L., et al.: Phase detection at the quantum limit with multiphoton Mach–Zehnder interferometry. Phys. Rev. Lett. 99, 223602-1–223602-4 (2007)

    Article  ADS  Google Scholar 

  33. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  34. Holland, M.J.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993)

    Article  ADS  Google Scholar 

  35. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hyllus, P., Gühne, O., Smerzi, A.: Not all pure entangled states are useful for sub-shot-noise interferometry. Phys. Rev. A 82, 012337-1–012337-12 (2010)

    Article  ADS  Google Scholar 

  37. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357–362 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  38. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics: Theory and Applications. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  39. Lang, M.D., Caves, C.M.: Optimal quantum-enhanced interferometry using a laser power source. Phys. Rev. Lett. 111, 173601-1–173601-5 (2013)

    ADS  Google Scholar 

  40. Pezzé, L., Smerzi, A.: Ultrasensitive two-mode interferometry with single-mode number squeezing. Phys. Rev. Lett. 110, 163604-1–163604-5 (2013)

    Article  ADS  Google Scholar 

  41. Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)

  42. Hofmann, H.F.: All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry. Phys. Rev. A 79, 033822-1–033822-4 (2009)

    ADS  Google Scholar 

  43. Seshadreesan, K.P., Kim, S., Dowling, J.P., Lee, H.: Phase estimation at the quantum Cramér–Rao bound via parity detection. Phys. Rev. A 87, 043833-1–043833-6 (2013)

    Article  ADS  Google Scholar 

  44. Chwedeńczuk, J., Hyllus, P., Piazza, F., Smerzi, A.: Sub-shot-noise interferometry from measurements of the one-body density. New J. Phys. 14(093001), 1–19 (2012)

    Google Scholar 

  45. Chwedeńczuk, J., Piazza, F., Smerzi, A.: Phase estimation from atom position measurements. New J. Phys. 13(065023), 1–18 (2011)

    Google Scholar 

  46. Grond, J., Hohenester, U., Mazets, I., Schmiedmayer, J.: Atom interferometry with trapped BoseEinstein condensates: impact of atom–atom interactions. New J. Phys. 12(065036), 1–29 (2010)

    Google Scholar 

Download references

Acknowledgments

J. Ch. acknowledges the Foundation for Polish Science International TEAM Programme co-financed by the EU European Regional Development Fund and the support of the Polish NCBiR under the ERA-NET CHIST-ERA project QUASAR. T.W. acknowledges the Foundation for Polish Science International Ph.D. Projects Programme co-financed by the EU European Regional Development Fund and the National Science Center Grant No. DEC-2011/03/D/ST2/00200. L.P. acknowledges financial support by MIUR through FIRB Project No. RBFR08H058. This research was partially supported by the EU-STREP Project QIBEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Chwedeńczuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasak, T., Smerzi, A., Pezzé, L. et al. Optimal measurements in phase estimation: simple examples. Quantum Inf Process 15, 2231–2252 (2016). https://doi.org/10.1007/s11128-016-1248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1248-5

Keywords

Navigation