Skip to main content
Log in

Automating quantum experiment control

From circuit compilation to ion routing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rowe, M.A., Ben-Kish, A., DeMarco, B., Leibfried, D., Meyer, V., Beall, J., Britton, J., Hughes, J., Itano, W.M., Jelenkovic, B., et al.: Transport of quantum states and separation of ions in a dual RF ion trap. Quantum Inf. Comput. 2, 257–271 (2002)

    MATH  Google Scholar 

  2. Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C., Rabchuk, J.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  3. Schulz, S.A., Poschinger, U.G., Singer, K., Schmidt-Kaler, F.: Optimization of segmented linear Paul traps and transport of stored particles. Prog. Phys. 54, 648 (2006)

    Google Scholar 

  4. Blakestad, R., Ospelkaus, C., VanDevender, A., Amini, J., Britton, J., Leibfried, D., Wineland, D.: High-fidelity transport of trapped-ion qubits through an X-junction trap array. Phys. Rev. Lett. 102, 153002 (2009)

    Article  ADS  Google Scholar 

  5. Chiaverini, J., Blakestad, R.B., Britton, J., Jost, J.D., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419–439 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J., Leibfried, D., Britton, J., Wesenberg, J., Blakestad, R., Epstein, R., Hume, D., et al.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  Google Scholar 

  7. Moehring, D.L., Highstrete, C., Stick, D., Fortier, K.M., Haltli, R., Tigges, C., Blain, M.G.: Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 13, 075018 (2011)

    Article  ADS  Google Scholar 

  8. Hughes, M.D., Lekitsch, B., Broersma, J.A., Hensinger, W.K.: Microfabricated ion traps. Contemp. Phys. 52, 505–529 (2011)

    Article  ADS  Google Scholar 

  9. Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.C., Hayden, H., Pai, C.S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15, 033004 (2013)

    Article  ADS  Google Scholar 

  10. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  11. Amini, J.M., Uys, H., Wesenberg, J., Seidelin, S., Britton, J., Bollinger, J., Leibfried, D., Ospelkaus, C., VanDevender, A., Wineland, D.: Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010)

    Article  ADS  Google Scholar 

  12. Jost, J.D., Home, J.P., Amini, J.M., Hanneke, D., Ozeri, R., Langer, C., Bollinger, J.J., Leibfried, D., Wineland, D.J.: Entangled mechanical oscillators. Nature 459, 683 (2009)

    Article  ADS  Google Scholar 

  13. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)

    Article  ADS  Google Scholar 

  14. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. CoRR arXiv:1304.3390 (2013)

  15. Oemer, B.: Classical concepts in quantum programming. Int. J. Theor. Phys. 44, 943–955 (2005)

    Article  MathSciNet  Google Scholar 

  16. Selinger, P.: Towards a quantum programming language. Math. Struct. Comput. Sci. 14, 527–586 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bettelli, S., Serafini, L., Calarco, T.: Toward an architecture for quantum programming. CoRR arXiv:cs.PL/0103009 (2001)

  18. Zuliani, P.: Logical reversibility. IBM J. Res. Dev. 45, 807–818 (2001)

    Article  Google Scholar 

  19. Tomita, Y., Gutiérrez, M., Kabytayev, C., Brown, K.R., Hutsel, M.R., Morris, A.P., Stevens, K.E., Mohler, G.: Comparison of ancilla preparation and measurement procedures for the Steane [[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)

    Article  ADS  Google Scholar 

  20. Doret, S.C., Amini, J.M., Wright, K., Volin, C., Killian, T., Ozakin, A., Denison, D., Hayden, H., Pai, C., Slusher, R.E., et al.: Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation. New J. Phys. 14, 073012 (2012)

    Article  ADS  Google Scholar 

  21. Splatt, F., Harlander, M., Brownnutt, M., Zhringer, F., Blatt, R., Hänsel, W.: Deterministic reordering of 40 Ca + ions in a linear segmented Paul trap. New J. Phys. 11, 103008 (2009)

    Article  ADS  Google Scholar 

  22. Monz, T., Nigg, D., Martinez, E.A., Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R.: Realization of a scalable Shor algorithm. Science 351, 1068 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63 (2016)

  24. Hucul, D., Inlek, I.V., Vittorini, G., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Georgia Tech Research Institute and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under US Army Research Office (ARO) contract W911NF081-0315 and W911NF101-0231. All statements of fact, opinion, or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly E. Stevens.

Additional information

This article is part of topical collection on Trapped Ion Quantum Information Processing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, K.E., Amini, J.M., Doret, S.C. et al. Automating quantum experiment control. Quantum Inf Process 16, 56 (2017). https://doi.org/10.1007/s11128-016-1454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1454-1

Keywords

Navigation