Skip to main content
Log in

Hierarchical joint remote state preparation in noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver’s port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state are concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued, all the receivers do not possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher-power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower-power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press (1994)

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  7. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  8. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389–403 (2011)

    Article  MATH  Google Scholar 

  10. Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, X.-W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)

    Article  ADS  Google Scholar 

  12. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  14. Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Zhan, X.-G., You, K.-M.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49, 2691–2697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Multiparty hierarchical quantum-information splitting. J. Phys. B 44, 035505 (2011)

    Article  ADS  Google Scholar 

  16. Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venugopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    Article  MATH  Google Scholar 

  17. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)

    Article  ADS  Google Scholar 

  18. Peng, J.-Y., Luo, M.-X., Mo, Z.-W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483–4487 (2010)

    Article  ADS  MATH  Google Scholar 

  20. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)

    Article  ADS  Google Scholar 

  21. An, N.B., Cao, T.B., Nung, V.D., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035009 (2011)

    Article  ADS  Google Scholar 

  22. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Luo, M.-X., Deng, Y., Chen, X.-B., Yang, Y.-X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279–294 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)

    Article  ADS  Google Scholar 

  25. Ma, P.-C., Zhan, Y.-B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445 (2008)

    Article  ADS  Google Scholar 

  26. Ma, P.-C., Zhan, Y.-B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640–2643 (2010)

    Article  ADS  Google Scholar 

  27. Zhan, Y.-B., Fu, H., Li, X.-W., Ma, P.-C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615–2622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  29. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phy. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  30. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Remote state preparation of a photonic quantum state via quantum teleportation. Appl. Phys. B 115, 541–546 (2014)

    Article  ADS  Google Scholar 

  31. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  32. Rådmark, M., Wieśniak, M., Żukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A 88, 032304 (2013)

    Article  ADS  Google Scholar 

  33. Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  34. Wang, M.M., Wang, W., Chen, J.G., et al.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14, 4211–4224 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236–2245 (2014)

    Article  MATH  Google Scholar 

  36. Lu, C.-Y., Gao, W.-B., Zhang, J., Zhou, X.-Q., Yang, T., Pan, J.-W.: Experimental quantum coding against qubit loss error. Proc. Natl. Acad. Sci. 105, 11050–11054 (2008)

    Article  ADS  Google Scholar 

  37. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Ż ukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  38. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  42. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  43. Prakash, H., Chandra, N., Prakash, R.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)

    Article  ADS  Google Scholar 

  44. Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16, 140 (2017)

    Article  ADS  Google Scholar 

  45. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    Article  ADS  Google Scholar 

  46. Henderson, L., Hardy, L., Vedral, V.: Two-state teleportation. Phys. Rev. A 61, 062306 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  47. Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process. 16, 76 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology (1998)

  49. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  50. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  51. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681–4710 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Chiuri, A., Rosati, V., Vallone, G., Pádua, S., Imai, H., Giacomini, S., Macchiavello, C., Mataloni, P.: Experimental realization of optimal noise estimation for a general Pauli channel. Phys. Rev. Lett. 107, 253602 (2011)

    Article  ADS  Google Scholar 

  54. Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)

    Article  ADS  Google Scholar 

  55. Fern, J., Whaley, K.B.: Lower bounds on the nonzero capacity of Pauli channels. Phys. Rev. A 78, 062335 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CS thanks Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS Fellows No. 15F15015. AP thanks Department of Science and Technology (DST), India, for the support provided through the Project No. EMR/2015/000393. Authors thank M. Ozawa for his interest in the work and for some useful suggestions and comments. Authors thank Roopal Vegad for her help in preparing a schematic diagram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, C., Thapliyal, K. & Pathak, A. Hierarchical joint remote state preparation in noisy environment. Quantum Inf Process 16, 205 (2017). https://doi.org/10.1007/s11128-017-1654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1654-3

Keywords

Navigation